【NLP】面向对话的机器阅读理解任务(Dialogue MRC)相关论文整理

共 2517字,需浏览 6分钟

 ·

2021-11-04 19:44

来自 | 知乎 作者 | 李家琦
链接|https://zhuanlan.zhihu.com/p/410984053
本文已获作者授权,未经许可禁止二次转载

Dialogue-based Machine Reading Comprehension任务是近两年比较新的机器阅读理解(MRC)任务,任务目标是让机器去理解人们之间的对话。本文简要整理了该任务现有数据集,并推荐几篇相关论文。

一、数据集


该任务现有的数据集主要有如下这些:

1. Ma et, al, 2018, NAACL(数据集没有命名)

任务类型:完形填空

论文:Challenging reading comprehension on daily conversation: Passage completion on multiparty dialog.

数据集:GitHub - emorynlp/reading-comprehension: Reading comprehension on multiparty dialog.

2. DREAM, TACL 2019

任务类型:单选题

论文:Dream: A challenge data set and models for dialogue-based reading comprehension.

数据集:A Challenge Dataset and Models for Dialogue-Based Reading Comprehension

3. FriendsQA, SIGDial 2019

任务类型:Span-base

论文:FriendsQA: Open-Domain Question Answering on TV Show Transcripts

数据集:GitHub - emorynlp/FriendsQA: Question answering on multiparty dialogue

4. Molweni,COLING 2020

任务类型:Span-based

论文:Molweni: A Challenge Multiparty Dialogue-based Machine Reading Comprehension Dataset with Discourse Structure

数据集:GitHub - HIT-SCIR/Molweni

5. QAConv, arXiv 2021

任务类型:Span-based

论文:QAConv: Question Answering on Informative Conversations

数据集:GitHub - salesforce/QAConv: This repository maintains the QAConv dataset, a question-answering dataset on informative conversations including business emails, panel discussions, and work channels.

目前此任务上使用比较多的数据集主要是DREAM、FriendsQA和Molweni。在QAConv数据集论文中,作者还将现有的几个数据集进行了对比。
数据集对比,来自QAConv论文


二、模型


这部分主要推荐DREAM、FriendsQA和Molweni这3个数据集上比较有代表性的模型论文。

1. DREAM数据集相关模型论文推荐
a. DUMA: Reading Comprehension with Transposition Thinking. arXiv 2020.
b. Multi-task Learning with Multi-head Attention for Multi-choice Reading Comprehension. arXiv 2020.

2. FriendsQA数据集相关模型论文推荐
a. Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for Span-based Question Answering. ACL 2020.
b. Graph-based knowledge integration for question answering over dialogue. COLING 2020.

3. Molweni数据集相关模型论文推荐
a. DADgraph: A Discourse-aware Dialogue Graph Neural Network for Multiparty Dialogue Machine Reading Comprehension. IJCNN 2021.
b. Self-and Pseudo-self-supervised Prediction of Speaker and Key-utterance for Multi-party Dialogue Reading Comprehension. EMNLP 2021 Findings.
c. Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension. arXiv 2021.

以上是我简单整理的Dialogue MRC任务数据集和推荐的几篇相关论文,欢迎补充!


往期精彩回顾




站qq群554839127,加入微信群请扫码:
浏览 49
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报