Python 神器 Celery 源码解析(6):不同启动模式的分析

Python猫

共 14241字,需浏览 29分钟

 ·

2021-12-10 14:03

剧照 | 《鬼灭之刃·游郭篇》

Celery是一款非常简单、灵活、可靠的分布式系统,可用于处理大量消息,并且提供了一整套操作此系统的工具。Celery 也是一款消息队列工具,可用于处理实时数据以及任务调度。

本文是是celery源码解析的第篇,在前五篇里分别介绍了:

  1. 神器 celery 源码解析- vine实现Promise功能
  2. 神器 celery 源码解析- py-amqp实现AMQP协议
  3. 神器 celery 源码解析- kombu,一个python实现的消息库
  4. 神器 celery 源码解析- kombu的企业级算法
  5. 神器 celery 源码解析- celery启动流程分析

本章我们跟着日志一起看看一次完整的任务调度流程,从另外一个角度了解启动过程中celery都做了什么。

worker模式启动流程

我们启动celery的worker, 启动大概分成3个阶段,先看第一阶段创建蓝图:

✗ celery -A myapp worker -l DEBUG
[2021-11-24 15:53:12,984: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: Building graph...
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: New boot order: {StateDB, Timer, Hub, Pool, Autoscaler, Beat, Consumer}
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Building graph...
[2021-11-24 15:53:13,038: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Gossip, Agent, Heart, event loop}

这一阶段主要启动了worker和consumer2个蓝图, 下面是蓝图的创建和日志可以完整对应:

class Blueprint:
    def apply(self, parent, **kwargs):
        # 创建蓝图
        self._debug('Preparing bootsteps.')
        order = self.order = []
        steps = self.steps = self.claim_steps()

        self._debug('Building graph...')
        for S in self._finalize_steps(steps):
            step = S(parent, **kwargs)
            steps[step.name] = step
            order.append(step)
        self._debug('New boot order: {%s}',
                    ', '.join(s.alias for s in self.order))
        for step in order:
            step.include(parent)
        return self

第一个Worker蓝图在WorkController中,包括了下面一些步骤:

class WorkController:

    class Blueprint(bootsteps.Blueprint):
    """Worker bootstep blueprint."""

    name = 'Worker'
    default_steps = {
        'celery.worker.components:Hub',
        'celery.worker.components:Pool',
        'celery.worker.components:Beat',
        'celery.worker.components:Timer',
        'celery.worker.components:StateDB',
        'celery.worker.components:Consumer',
        'celery.worker.autoscale:WorkerComponent',
    }

第二个Consumer蓝图在Consumer中,包括了下面一些步骤:

class Consumer:
    """Consumer blueprint."""
    class Blueprint(bootsteps.Blueprint):
    """Consumer blueprint."""

    name = 'Consumer'
    default_steps = [
        'celery.worker.consumer.connection:Connection',
        'celery.worker.consumer.mingle:Mingle',
        'celery.worker.consumer.events:Events',
        'celery.worker.consumer.gossip:Gossip',
        'celery.worker.consumer.heart:Heart',
        'celery.worker.consumer.control:Control',
        'celery.worker.consumer.tasks:Tasks',
        'celery.worker.consumer.consumer:Evloop',
        'celery.worker.consumer.agent:Agent',
    ]

创建完2个蓝图后,并没有立即启动蓝图,转而进入第二阶段创建启动worker,日志输出如下:

...
celery@192.168.5.28 v5.1.2 (sun-harmonics)

macOS-10.16-x86_64-i386-64bit 2021-11-24 11:04:09

[config]
.> app:         myapp:0x7fc898739ac0
.> transport:   redis://localhost:6379/0
.> results:     redis://localhost:6379/0
.> concurrency: 12 (prefork)
.> task events: OFF (enable -E to monitor tasks in this worker)

[queues]
.> celery           exchange=celery(direct) key=celery


[tasks]
  . celery.accumulate
  . celery.backend_cleanup
  . celery.chain
  . celery.chord
  . celery.chord_unlock
  . celery.chunks
  . celery.group
  . celery.map
  . celery.starmap
  . myapp.add

...

这个过程app创建完成,把当前的配置信息,task列表都展示出来。展示信息的模版:

BANNER = """\
{hostname} v{version}

{platform} {timestamp}

[config]
.> app:         {app}
.> transport:   {conninfo}
.> results:     {results}
.> concurrency: {concurrency}
.> task events: {events}

[queues]
{queues}
"
""

EXTRA_INFO_FMT = """
[tasks]
{tasks}
"
""

task信息来自app的tasks,在上篇我们介绍过,其实就是TaskRegistry;并发模式默认使用的prefork,多进程模式;然后是AMQP的消费者,queue,exchange等信息:

def extra_info(self):
    if self.loglevel <= logging.INFO:
        include_builtins = self.loglevel <= logging.DEBUG
        tasklist = sep.join(
            f'  . {task}' for task in sorted(self.app.tasks)
            if (not task.startswith(int_) if not include_builtins else task)
        )
        return EXTRA_INFO_FMT.format(tasks=tasklist)
            
def startup_info(self, artlines=True):
    app = self.app
    concurrency = str(self.concurrency)
    appr = '{}:{:#x}'.format(app.main or '__main__', id(app))
    ...
    banner = BANNER.format(
        app=appr,
        hostname=safe_str(self.hostname),
        timestamp=datetime.now().replace(microsecond=0),
        version=VERSION_BANNER,
        conninfo=self.app.connection().as_uri(),
        results=self.app.backend.as_uri(),
        concurrency=concurrency,
        platform=safe_str(_platform.platform()),
        events=events,
        queues=app.amqp.queues.format(indent=0, indent_first=False),
    ).splitlines()
    ...

我们可以查看celery的进程数,确认总共创建了12个进程(进程数是通过cpu核数计算出来):

➜  ~ ps -ef | grep celery
  501 72465 68316   0  3:53下午 ttys003    0:10.17 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  ...
  501 72479 72465   0  3:53下午 ttys003    0:00.01 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  501 80540 71485   0  5:33下午 ttys005    0:00.00 grep --color=auto --exclude-dir=.bzr --exclude-dir=CVS --exclude-dir=.git --exclude-dir=.hg --exclude-dir=.svn celery

除了默认的多进程方式,celery还支持下面这些并发模式:

ALIASES = {
    'prefork''celery.concurrency.prefork:TaskPool',
    'eventlet''celery.concurrency.eventlet:TaskPool',
    'gevent''celery.concurrency.gevent:TaskPool',
    'solo''celery.concurrency.solo:TaskPool',
    'processes''celery.concurrency.prefork:TaskPool',  # XXX compat alias
    'threads''celery.concurrency.thread:TaskPool'
}

def get_implementation(cls):
    """Return pool implementation by name."""
    return symbol_by_name(cls, ALIASES)

threads 需要concurrent.futures支持,也就是python3.2版本以上

worker启动的第3阶段就是启动蓝图,日志如下:

[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Hub
[2021-11-24 15:53:13,062: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Pool
[2021-11-24 15:53:13,410: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-11-24 15:53:15,902: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-11-24 15:53:15,902: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,902: DEBUG/MainProcess] | Consumer: Starting Events
[2021-11-24 15:53:15,918: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,918: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-11-24 15:53:15,918: INFO/MainProcess] mingle: searching for neighbors
[2021-11-24 15:53:16,966: INFO/MainProcess] mingle: all alone
[2021-11-24 15:53:16,966: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,967: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-11-24 15:53:16,975: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,975: DEBUG/MainProcess] | Consumer: Starting Control
[2021-11-24 15:53:16,988: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,988: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-11-24 15:53:17,001: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,002: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-11-24 15:53:17,008: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-11-24 15:53:17,009: INFO/MainProcess] celery@192.168.5.28 ready.
[2021-11-24 15:53:17,010: DEBUG/MainProcess] basic.qos: prefetch_count->48

在worker启动中,我们需要关注worker蓝图的hub,pool二步(step),consumer蓝图的connection,events,mingle,task,control,gossip,heart和Evloop七步(step)。

beat模式启动流程

beat模式的启动和worker模式不一样。beat模式主要是定时处理,并且beat模式不执行具体的任务,只是负责触发定时任务。其启动日志如下:

✗ celery -A myapp beat -l DEBUG
celery beat v5.0.5 (singularity) is starting.
__    -    ... __   -        _
LocalTime -> 2021-12-05 15:40:39
Configuration ->
    . broker -> redis://localhost:6379/0
    . loader -> celery.loaders.app.AppLoader
    . scheduler -> celery.beat.PersistentScheduler
    . db -> celerybeat-schedule
    . logfile -> [stderr]@%DEBUG
    . maxinterval -> 5.00 minutes (300s)
[2021-12-05 15:40:39,639: DEBUG/MainProcess] Setting default socket timeout to 30
[2021-12-05 15:40:39,639: INFO/MainProcess] beat: Starting...
[2021-12-05 15:40:39,667: DEBUG/MainProcess] Current schedule:

[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Ticking with max interval->5.00 minutes
[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.
[2021-12-05 15:45:39,608: DEBUG/MainProcess] beat: Synchronizing schedule...
[2021-12-05 15:45:39,609: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.

从日志可以看到beat模式启动也大概可以分成2个阶段。第一个阶段就是创建和启动任务调度器,由beat命令提供:

class Beat:
    """Beat as a service."""
    
    def run(self):
        print(str(self.colored.cyan(
            f'celery beat v{VERSION_BANNER} is starting.')))
        self.init_loader()
        self.set_process_title()
        self.start_scheduler()

第二个阶段,任务调度器开始时间循环:

# celery/beat.py

class Service:
    """Celery periodic task service."""
    
    scheduler_cls = PersistentScheduler
    
    def start(self, embedded_process=False):
        info('beat: Starting...')
        debug('beat: Ticking with max interval->%s',
              humanize_seconds(self.scheduler.max_interval))

        signals.beat_init.send(sender=self)
        if embedded_process:
            signals.beat_embedded_init.send(sender=self)
            platforms.set_process_title('celery beat')

        try:
            while not self._is_shutdown.is_set():
                interval = self.scheduler.tick()
                if interval and interval > 0.0:
                    debug('beat: Waking up %s.',
                          humanize_seconds(interval, prefix='in '))
                    time.sleep(interval)
                    if self.scheduler.should_sync():
                        self.scheduler._do_sync()
        except (KeyboardInterrupt, SystemExit):
            self._is_shutdown.set()
        finally:
            self.sync()

这里的时间循环使用一个while循环去完成,每次tick都会检查是否有需要执行的任务,默认5分钟检查一次。

如果到达任务执行的时刻,则是通过下面的apply_async发送到worker(远程)去执行:

def apply_async(self, entry, producer=None, advance=True, **kwargs):
    # Update time-stamps and run counts before we actually execute,
    # so we have that done if an exception is raised (doesn't schedule
    # forever.)
    entry = self.reserve(entry) if advance else entry
    task = self.app.tasks.get(entry.task)

    try:
        entry_args = [v() if isinstance(v, BeatLazyFunc) else v for v in (entry.args or [])]
        entry_kwargs = {k: v() if isinstance(v, BeatLazyFunc) else v for k, v in entry.kwargs.items()}
        return task.apply_async(entry_args, entry_kwargs,
                                    producer=producer,
                                    **entry.options)

multi模式启动流程

使用multi模式启动celery,可以让celery以服务的形式在background执行任务,并且可以启动更多的celery的执行进程。使用下面命令启动2个node ,w1和w2。

✗ celery multi start w1 w2 -A myapp -l DEBUG
celery multi v5.0.5 (singularity)
> Starting nodes...
 > w1@bogon: OK
 > w2@bogon: OK

注意这个命令需要sudo权限

使用下面命令监测celery服务的状态。

✗ celery -A myapp status
->  w1@bogon: OK
->  w2@bogon: OK

2 nodes online.

w1的启动流程会写入到日志,日志内容如下:

✗ cat /var/log/celery/w1.log
[2021-12-05 15:59:11,161: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-12-05 15:59:11,162: DEBUG/MainProcess] | Worker: Building graph...
[2021-12-05 15:59:11,163: DEBUG/MainProcess] | Worker: New boot order: {Beat, StateDB, Timer, Hub, Pool, Autoscaler, Consumer}
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Building graph...
[2021-12-05 15:59:11,206: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Agent, Gossip, Heart, event loop}
[2021-12-05 15:59:11,219: DEBUG/MainProcess] | Worker: Starting Hub
[2021-12-05 15:59:11,219: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,220: DEBUG/MainProcess] | Worker: Starting Pool
[2021-12-05 15:59:11,517: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-12-05 15:59:11,549: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-12-05 15:59:11,549: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,549: DEBUG/MainProcess] | Consumer: Starting Events
[2021-12-05 15:59:11,561: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,561: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-12-05 15:59:11,562: INFO/MainProcess] mingle: searching for neighbors
[2021-12-05 15:59:12,602: INFO/MainProcess] mingle: all alone
[2021-12-05 15:59:12,602: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,603: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-12-05 15:59:12,609: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,609: DEBUG/MainProcess] | Consumer: Starting Control
[2021-12-05 15:59:12,621: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,622: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-12-05 15:59:12,632: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,633: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-12-05 15:59:12,638: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-12-05 15:59:12,639: INFO/MainProcess] w1@bogon ready.
[2021-12-05 15:59:12,639: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:18,039: DEBUG/MainProcess] pidbox received method hello(from_node='w2@bogon', revoked={}) [reply_to:{'exchange''reply.celery.pidbox''routing_key''196c0b68-a329-3e09-a1cf-54abb5e057db'} ticket:e640e757-9514-436c-8548-0ddcbe15f9a4]
[2021-12-05 15:59:18,040: INFO/MainProcess] sync with w2@bogon
[2021-12-05 15:59:19,088: DEBUG/MainProcess] w2@bogon joined the party

w1的启动方式和worker模式基本一致,特别的地方在日志的最后部分显示w2启动完成后,w1和w2进行了互联。对应可以在w2的日志中看到w1的连接信息:

✗ cat /var/log/celery/w2.log
...
[2021-12-05 15:59:19,089: INFO/MainProcess] w2@bogon ready.
[2021-12-05 15:59:19,089: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:20,663: DEBUG/MainProcess] w1@bogon joined the party

所以multi模式的特点就是新增加了Cluster和Node的概念,用来管理所有的worker,主要代码如下:

@splash
@using_cluster
def start(self, cluster):
    self.note('> Starting nodes...')
    return int(any(cluster.start()))

def start(self):
    return [self.start_node(node) for node in self]

def start_node(self, node):
    maybe_call(self.on_node_start, node)
    retcode = node.start(
            self.env,
            on_spawn=self.on_child_spawn,
            on_signalled=self.on_child_signalled,
            on_failure=self.on_child_failure,
        )
    maybe_call(self.on_node_status, node, retcode)
    return retcode

Node直接同步是在Gossip的step中:

class Gossip(bootsteps.ConsumerStep):
    ...
    def on_node_join(self, worker):
        debug('%s joined the party', worker.hostname)
        self._call_handlers(self.on.node_join, worker)

完成测试后,可以使用命令 celery multi stop w1 w2 关闭node

worker接收任务流程

worker接收任务并执行的日志如下:

[2021-11-24 21:33:50,535: INFO/MainProcess] Received task: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2]
[2021-11-24 21:33:50,535: DEBUG/MainProcess] TaskPool: Apply <function _trace_task_ret at 0x7fe6086ac280> (args:('myapp.add''e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', {'lang''py''task''myapp.add''id''e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2''shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id''e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2''parent_id': None, 'argsrepr''(16, 16)''kwargsrepr''{}''origin''gen83110@192.168.5.28''reply_to''63862dbb-9d82-3bdd-b7fb-03580941362a''correlation_id''e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2''hostname''celery@192.168.5.28''delivery_info': {'exchange''''routing_key''celery''priority': 0, 'redelivered': None}, 'args': [16, 16], 'kwargs': {}}, b'[[16, 16], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]''application/json''utf-8') kwargs:{})
[2021-11-24 21:33:50,536: DEBUG/MainProcess] Task accepted: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] pid:83086
[2021-11-24 21:33:50,537: INFO/ForkPoolWorker-8] Task myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] succeeded in 0.000271957000000711s: 32

从日志信息可以看到,主进程MainProcess收到task执行的请求,然后从任务池中获取到任务,然后调度任务到一个子进程ForkPoolWorker-9中执行。

任务的接收是在默认的策略函数中开始:

# celery/worker/strategy.py

def default(task, app, consumer,
            info=logger.info, error=logger.error, task_reserved=task_reserved,
            to_system_tz=timezone.to_system, bytes=bytes,
            proto1_to_proto2=proto1_to_proto2):
    """Default task execution strategy.

    Note:
        Strategies are here as an optimization, so sadly
        it's not very easy to override.
    "
""
    ...
    info('Received task: %s', req)
    ...

任务池是由并发模型提供:

# celery/concurrency/base.py

def apply_async(self, target, args=None, kwargs=None, **options):
    """Equivalent of the :func:`apply` built-in function.

    Callbacks should optimally return as soon as possible since
    otherwise the thread which handles the result will get blocked.
    "
""
    kwargs = {} if not kwargs else kwargs
    args = [] if not args else args
    if self._does_debug:
        logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)',
                     target, truncate(safe_repr(args), 1024),
                     truncate(safe_repr(kwargs), 1024))

    return self.on_apply(target, args, kwargs,
                         waitforslot=self.putlocks,
                         callbacks_propagate=self.callbacks_propagate,
                         **options)

小结

我们通过对worker,beat和multi三种启动模式的日志跟踪分析,对celery的启动流程和模块功能有更进一步的了解。

三个模式都需要创建app,所以启动时候通过参数-A myapp参数,由app创建/查找各种task。不同的地方首先是beat和worker/multi不同,beat实际上就是一个生产者,通过配置定时的产生任务,然后发送给worker/multi具体执行。

其次不同的是worker和multi的运作方式,multi以服务方式运行,并且可以跨机器。在worker模式下,本机创建多个工作进程,是一个多进程模型。multi则是多个机器Node形成一个Cluster集群,任务在集群内部进行调度。

celery的分布式模型大概可以如下图:

同时通过运行日志分析,我们可以知道celery的启动过程通过不同的Blueprint的不同Step过程实现;定时功能主要在beat和schedule模块实现;而分布式功能主要在concurrency模块,这样对各个模块的主体功能分工会有更清晰的认知。

Python猫技术交流群开放啦!群里既有国内一二线大厂在职员工,也有国内外高校在读学生,既有十多年码龄的编程老鸟,也有中小学刚刚入门的新人,学习氛围良好!想入群的同学,请在公号内回复『交流群』,获取猫哥的微信(谢绝广告党,非诚勿扰!)~


还不过瘾?试试它们




Python 图形界面框架 PyQt5 使用指南!

Python最会变魔术的魔术方法,我觉得是它!

Python 为了提升性能,竟运用了共享经济

遇见一只黑猫,她说程序员都是骗子

Python 中的数字到底是什么?

通过 for 循环,比较 Python 与 Ruby 编程思想的差别


如果你觉得本文有帮助
请慷慨分享点赞,感谢啦
浏览 71
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报