4000字,25张精美交互图表,开启Plotly Express之旅!

俊红的数据分析之路

共 4866字,需浏览 10分钟

 ·

2022-03-06 16:32

Plotly Express 是一个新的高级 Python 可视化库,它是 Plotly.py 的高级封装,为复杂图表提供简单的语法。最主要的是 Plotly 可以与 Pandas 数据类型 DataFrame 完美的结合,对于数据分析、可视化来说实在是太便捷了,而且是完全免费的,非常值得尝试

下面我们使用 Ployly 的几个内置数据集来进行相关图表绘制的演示

数据集



Plotly 内置的所有数据集都是 DataFrame 格式,也即是与 Pandas 深度契合的体现

不同国家历年GDP收入与人均寿命

包含字段:国家、洲、年份、平均寿命、人口数量、GDP、国家简称、国家编号

gap = px.data.gapminder()
gap2007 = gap.query("year==2007")
gap2007

Output


餐馆的订单流水

包含字段:总账单、小费、性别、是否抽烟、星期几、就餐时间、人数

tips = px.data.tips()
tips

Output


鸢尾花

包含字段:萼片长、萼片宽、花瓣长、花瓣宽、种类、种类编号

iris = px.data.iris()  
iris

Output


风力数据

包含字段:方向、强度、数值

wind = px.data.wind()  
wind

Output


2013年蒙特利尔市长选举投票结果

包括字段:区域、Coderre票数、Bergeron票数、Joly票数、总票数、胜者、结果(占比分类)

election = px.data.election() 
election

Output


蒙特利尔一个区域中心附近的汽车共享服务的可用性

包括字段:纬度、经度、汽车小时数、高峰小时

carshare = px.data.carshare()
carshare

Output



内置调色板



Plotly 还拥有众多色彩高级的调色板,使得我们在绘制图表的时候不再为颜色搭配而烦恼

卡通片的色彩和序列

px.colors.carto.swatches() 

Output


CMOcean项目的色阶

px.colors.cmocean.swatches() 

Output


还有其他很多调色板供选择,就不一一展示了,下面只给出代码,具体颜色样式可以自行运行代码查看

ColorBrewer2项目的色阶

px.colors.colorbrewer

周期性色标,适用于具有自然周期结构的连续数据

px.colors.cyclical 

分散色标,适用于具有自然终点的连续数据

px.colors.diverging     

定性色标,适用于没有自然顺序的数据

px.colors.qualitative

顺序色标,适用于大多数连续数据

px.colors.sequential        


Plotly Express 基本绘图



散点图

Plotly 绘制散点图非常容易,一行代码就可以完成

px.scatter(gap2007, x="gdpPercap", y="lifeExp")

Output


还可以通过参数 color 来区分不同的数据类别

px.scatter(gap2007, x="gdpPercap", y="lifeExp", color="continent")

Output


这里每个点都代表一个国家,不同颜色则代表不同的大洲

可以使用参数 size 来体现数据的大小情况

px.scatter(gap2007, x="gdpPercap", y="lifeExp", color="continent", size="pop", size_max=60)

Output


还可以通过参数 hover_name 来指定当鼠标悬浮的时候,展示的信息


还可以根据数据集中不同的数据类型进行图表的拆分

px.scatter(gap2007, x="gdpPercap", y="lifeExp", color="continent", size="pop"
           size_max=60, hover_name="country", facet_col="continent", log_x=True)

Output


我们当然还可以查看不同年份的数据,生成自动切换的动态图表

px.scatter(gap, x="gdpPercap", y="lifeExp", color="continent", size="pop"
           size_max=60, hover_name="country", animation_frame="year", animation_group="country", log_x=True,
          range_x=[100100000], range_y=[2590], labels=dict(pop="Population", gdpPercap="GDP per Capa", lifeExp="Life Expectancy"))

Output


地理信息图

Plotly 绘制动态的地理信息图表也是非常方便,通过这种地图的形式,我们也可以清楚的看到数据集中缺少前苏联的相关数据

px.choropleth(gap, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year"
              color_continuous_scale=px.colors.sequential.Plasma, projection="natural earth")

Output


矩阵散点图

px.scatter_matrix(iris, dimensions=['sepal_width''sepal_length''petal_width''petal_length'], color='species', symbol='species')

Output


平行坐标图

px.parallel_coordinates(tips, color='size', color_continuous_scale=px.colors.sequential.Inferno)

Output


三元散点图

px.scatter_ternary(election, a="Joly", b="Coderre", c="Bergeron", color="winner", size="total", hover_name="district",
                   size_max=15, color_discrete_map = {"Joly""blue"
                   "Bergeron""green""Coderre":"red"} )

Output


极坐标线条图

px.line_polar(wind, r="frequency", theta="direction", color="strength"
            line_close=True,color_discrete_sequence=px.colors.sequential.Plotly3[-2::-1])

Output


小提琴图

px.violin(tips, y="tip", x="sex", color="smoker", facet_col="day", facet_row="time",box=True, points="all"
          category_orders={"day": ["Thur""Fri""Sat""Sun"], "time": ["Lunch""Dinner"]},
          hover_data=tips.columns)

Output


极坐标条形图

px.bar_polar(wind, r="frequency", theta="direction", color="strength",
            color_discrete_sequence= px.colors.sequential.Plotly3[-2::-1])

Output


并行类别图

px.parallel_categories(tips, color="size", color_continuous_scale=px.
            colors.sequential.Inferno)

Output


直方图

px.histogram(tips, x="total_bill", color="smoker",facet_row="day", facet_col="time")

Output


三维散点图

px.scatter_3d(election, x="Joly", y="Coderre", z="Bergeron", color="winner"
              size="total", hover_name="district",symbol="result"
              color_discrete_map = {"Joly""blue""Bergeron""green"
              "Coderre":"red"})

Output


密度等值线图

px.density_contour(iris, x="sepal_width", y="sepal_length", color="species")

Output


箱形图

px.box(tips, x="sex", y="tip", color="smoker", notched=True)

Output


地理坐标线条图

px.line_geo(gap.query("year==2007"), locations="iso_alpha"
            color="continent", projection="orthographic")

Output


条线图

px.line(gap, x="year", y="lifeExp", color="continent"
        line_group="country", hover_name="country",
        line_shape="spline", render_mode="svg")

Output


面积图

px.area(gap, x="year", y="pop", color="continent"
        line_group="country")

Output


热力图

px.density_heatmap(iris, x="sepal_width", y="sepal_length"
                   marginal_x="rug", marginal_y="histogram")

Output


条形图

px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group")

Output


总体来说,Plotly/Plotly Express 还是非常强大绘图工具,值得我们细细研究~

好了今天的分享就到这里,后续还会分享更多 Plotly 相关的知识。

END -
对比Excel系列图书累积销量达15w册,让你轻松掌握数据分析技能,可以在全网搜索书名进行了解:
浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报