谈谈stream的运行原理
害,别误会,我这里说的stream不是流式编程,不是大数据处理框架。我这里说的是stream指的是jdk中的一个开发工具包stream. 该工具包在jdk8中出现,可以说已经是冷饭了,为何还要你说?只因各家一言,不算得自家理解,如若有空,何多听一版又何妨。
本篇主要从几个方面讲讲:1. 我们常见的stream都有哪些?2. stream包有哪些好处?3. stream包的实现原理?相信这些多少会解开大家的一些迷惑。
1:我们常见的stream都有哪些?
stream直接翻译为流。何谓流?我们最常见的,比如网络中的数据传输,即tcp/udp那一套东西,都是建立在二进制流的基础上的。用流来形容这些数据或文件的传输,非常形象,因为数据总是源源不断地从一端流向另一端,这是不流是什么。只是,传输到另一端之后,我们再做解析,便有了数据或文件之说。其实这说的,便是高层协议了。
另说一个stream, 那就是jdk中的各种InputStream了,它用于读取文件数据,读取byte数据,其实也是源源不断将数据从一个设备流入到另一设备。jdk中有InputStream/OutputStream, 作为根基,其上则是各种 FileInputStream, FileOutputStream, FileReader, FileWriter,... 实际上,整个io包几乎都是在围绕流这个概念来展开的。可见,io是相当的重要啊。
再说一stream, 则是对大数据的处理了,stream,即是实时数据处理的重要技术实现,因与实时二字吻合,恰好又类似于数据从一设备流入另一设备,且是实时的。所以,stream在大数据领域也是大放异彩啊!比如 spark, flink 你可知?比如 图数据库语言标准 gremlin 的算子。
还有更多的流概念,更多的流实现,不必细说,也无法细说。单只知道,流无处不在,非常重要。
还有本文要议的stream包,到底是何生物,且看后续说来。
2. stream包有何好处?
stream包,在java中是以一个工具包的形式存在,即你用则以,不用亦可。
那么,用它到底有何好处?好处主要有二:1.可以减少冗余代码的编写;比如要写一个过滤器则只需调用一filter()传入处理逻辑即可;2.可以很方便的利用一些隐藏的升级好处或者多核带来的好处;(当然你可能用不上这些好处)
说实话,这两个功能,看起来实际没有太多的诱惑力,但凡我们封装几个方法,供外部调用,不也可以达到同等效果?是了!如果你有这等造诣,能够抽象出足够通用的方法,供各方使用,那你不算大牛何人算?说到底,stream也就是高手封装的工具包而已。
来几个应用实例,看看stream都如何使用的:
public class StreamUtilTest {
@Test
public void testArrayStream() {
// 1. 过滤值;改变值;排序;
Integer[] intArr = {1, 2, 3, 5, 22, 8, 5};
List<Integer> iArrList = Arrays.stream(intArr)
.filter(r -> r < 20)
.map(r -> r + 1)
.sorted().collect(Collectors.toList());
System.out.println("result:" + iArrList);
String[] strArr = {"a1,a2", "q,y,h", "ddd,bb,n", null};
// 2. 过滤数组;拆分值;输出;
Arrays.stream(strArr).filter(Objects::nonNull)
.flatMap(r -> Arrays.stream(r.split(",")))
.forEach(System.out::println);
}
@Test
public void testListStream() {
List<String> list = new ArrayList<>();
list.add("ab");
list.add("ccc");
list.add("ddd");
// 3. 求list中的最大值
Optional<String> maxStr = list.stream().max(Comparator.naturalOrder());
System.out.println(maxStr);
}
}
害,不必纠结里面干的事情复不复杂,有没有意义,只知道有这用法即可。反正就当你会这么用,即能解决这般问题。这也是我们高级语言使用必备技能,学会调用api.
不过需要说明的,java中有一句老话,叫做万事万物皆对象。但见上面的写法,自然不太像对象。是了,这是lamda语法,虽说另一主题,但何妨在此处一题。但既然说到这,不妨来想想这lamda到底是何物?从某种角度来说,它可以看作是一种内部类,不过写法不太一样。但是当我们仔细观察class文件的变化情况时,发现它与内部类又不太一致,因为java的内部类会在class中生成$xx.class的类文件,而lamda表达式却不会。但是不管怎么样,它是可以使用内部类的表达方式获得同样的效果,只需将该类代入到其中,即可达到同样的效果。
但要细说lamda表达式,则可以反编译下class文件,可以见些许端倪。
# 调用lamda表达式示例
...
59: invokestatic #4 // Method java/util/Arrays.stream:([Ljava/lang/Object;)Ljava/util/stream/Stream;
62: invokedynamic #5, 0 // InvokeDynamic #0:test:()Ljava/util/function/Predicate;
67: invokeinterface #6, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/ut
il/stream/Stream;
72: invokedynamic #7, 0 // InvokeDynamic #1:apply:()Ljava/util/function/Function;
77: invokeinterface #8, 2 // InterfaceMethod java/util/stream/Stream.map:(Ljava/util/function/Function;)Ljava/util/s
tream/Stream;
...
# 常量池定义,实际是定义了lamda的实现方式为 #0 号方法
#5 = InvokeDynamic #0:#102 // #0:test:()Ljava/util/function/Predicate;
# lamda表达式的具体实现1示例
BootstrapMethods:
0: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lan
g/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite
;
Method arguments:
#99 (Ljava/lang/Object;)Z
// 此处为调用具体的实现方法
#100 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$0:(Ljava/lang/Integer;)Z
#101 (Ljava/lang/Integer;)Z
1: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
Method arguments:
#105 (Ljava/lang/Object;)Ljava/lang/Object;
#106 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$1:(Ljava/lang/Integer;)Ljava/lang/Integer;
#107 (Ljava/lang/Integer;)Ljava/lang/Integer;
# lamda表达式具体实现2, 上一步的静态调用
private static boolean lambda$testArrayStream$0(java.lang.Integer);
descriptor: (Ljava/lang/Integer;)Z
flags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETIC
Code:
stack=2, locals=1, args_size=1
0: aload_0
1: invokevirtual #48 // Method java/lang/Integer.intValue:()I
4: bipush 20
6: if_icmpge 13
9: iconst_1
10: goto 14
13: iconst_0
14: ireturn
LineNumberTable:
line 16: 0
LocalVariableTable:
Start Length Slot Name Signature
0 15 0 r Ljava/lang/Integer;
StackMapTable: number_of_entries = 2
frame_type = 13 /* same */
frame_type = 64 /* same_locals_1_stack_item */
stack = [ int ]
MethodParameters:
Name Flags
r synthetic
害,往深了就不说了。单说这lamda表达式,并非使用内部类来实现的,而是使用内部静态函数来做的,所以也叫函数式编程呢。烦话休提。
最后,再来看看,这stream包究竟有何神圣地方?其实,就是一个以一个 Stream 接口定义为核心展开的,且看如下:
/**
* A sequence of elements supporting sequential and parallel aggregate
* operations. The following example illustrates an aggregate operation using
* {@link Stream} and {@link IntStream}:
*
* <pre>{@code
* int sum = widgets.stream()
* .filter(w -> w.getColor() == RED)
* .mapToInt(w -> w.getWeight())
* .sum();
* }</pre>
*
* In this example, {@code widgets} is a {@code Collection<Widget>}. We create
* a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},
* filter it to produce a stream containing only the red widgets, and then
* transform it into a stream of {@code int} values representing the weight of
* each red widget. Then this stream is summed to produce a total weight.
*
* <p>In addition to {@code Stream}, which is a stream of object references,
* there are primitive specializations for {@link IntStream}, {@link LongStream},
* and {@link DoubleStream}, all of which are referred to as "streams" and
* conform to the characteristics and restrictions described here.
*
* <p>To perform a computation, stream
* <a href="package-summary.html#StreamOps">operations</a> are composed into a
* <em>stream pipeline</em>. A stream pipeline consists of a source (which
* might be an array, a collection, a generator function, an I/O channel,
* etc), zero or more <em>intermediate operations</em> (which transform a
* stream into another stream, such as {@link Stream#filter(Predicate)}), and a
* <em>terminal operation</em> (which produces a result or side-effect, such
* as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).
* Streams are lazy; computation on the source data is only performed when the
* terminal operation is initiated, and source elements are consumed only
* as needed.
*
* <p>Collections and streams, while bearing some superficial similarities,
* have different goals. Collections are primarily concerned with the efficient
* management of, and access to, their elements. By contrast, streams do not
* provide a means to directly access or manipulate their elements, and are
* instead concerned with declaratively describing their source and the
* computational operations which will be performed in aggregate on that source.
* However, if the provided stream operations do not offer the desired
* functionality, the {@link #iterator()} and {@link #spliterator()} operations
* can be used to perform a controlled traversal.
*
* <p>A stream pipeline, like the "widgets" example above, can be viewed as
* a <em>query</em> on the stream source. Unless the source was explicitly
* designed for concurrent modification (such as a {@link ConcurrentHashMap}),
* unpredictable or erroneous behavior may result from modifying the stream
* source while it is being queried.
*
* <p>Most stream operations accept parameters that describe user-specified
* behavior, such as the lambda expression {@code w -> w.getWeight()} passed to
* {@code mapToInt} in the example above. To preserve correct behavior,
* these <em>behavioral parameters</em>:
* <ul>
* <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>
* (they do not modify the stream source); and</li>
* <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>
* (their result should not depend on any state that might change during execution
* of the stream pipeline).</li>
* </ul>
*
* <p>Such parameters are always instances of a
* <a href="../function/package-summary.html">functional interface</a> such
* as {@link java.util.function.Function}, and are often lambda expressions or
* method references. Unless otherwise specified these parameters must be
* <em>non-null</em>.
*
* <p>A stream should be operated on (invoking an intermediate or terminal stream
* operation) only once. This rules out, for example, "forked" streams, where
* the same source feeds two or more pipelines, or multiple traversals of the
* same stream. A stream implementation may throw {@link IllegalStateException}
* if it detects that the stream is being reused. However, since some stream
* operations may return their receiver rather than a new stream object, it may
* not be possible to detect reuse in all cases.
*
* <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},
* but nearly all stream instances do not actually need to be closed after use.
* Generally, only streams whose source is an IO channel (such as those returned
* by {@link Files#lines(Path, Charset)}) will require closing. Most streams
* are backed by collections, arrays, or generating functions, which require no
* special resource management. (If a stream does require closing, it can be
* declared as a resource in a {@code try}-with-resources statement.)
*
* <p>Stream pipelines may execute either sequentially or in
* <a href="package-summary.html#Parallelism">parallel</a>. This
* execution mode is a property of the stream. Streams are created
* with an initial choice of sequential or parallel execution. (For example,
* {@link Collection#stream() Collection.stream()} creates a sequential stream,
* and {@link Collection#parallelStream() Collection.parallelStream()} creates
* a parallel one.) This choice of execution mode may be modified by the
* {@link #sequential()} or {@link #parallel()} methods, and may be queried with
* the {@link #isParallel()} method.
*
* @param <T> the type of the stream elements
* @since 1.8
* @see IntStream
* @see LongStream
* @see DoubleStream
* @see <a href="package-summary.html">java.util.stream</a>
*/
public interface Stream<T> extends BaseStream<T, Stream<T>> {
/**
* Returns a stream consisting of the elements of this stream that match
* the given predicate.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to each element to determine if it
* should be included
* @return the new stream
*/
Stream<T> filter(Predicate<? super T> predicate);
/**
* Returns a stream consisting of the results of applying the given
* function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param <R> The element type of the new stream
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
* @return the new stream
*/
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
/**
* Returns an {@code IntStream} consisting of the results of applying the
* given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">
* intermediate operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
* @return the new stream
*/
IntStream mapToInt(ToIntFunction<? super T> mapper);
/**
* Returns a {@code LongStream} consisting of the results of applying the
* given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
* @return the new stream
*/
LongStream mapToLong(ToLongFunction<? super T> mapper);
/**
* Returns a {@code DoubleStream} consisting of the results of applying the
* given function to the elements of this stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element
* @return the new stream
*/
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
/**
* Returns a stream consisting of the results of replacing each element of
* this stream with the contents of a mapped stream produced by applying
* the provided mapping function to each element. Each mapped stream is
* {@link java.util.stream.BaseStream#close() closed} after its contents
* have been placed into this stream. (If a mapped stream is {@code null}
* an empty stream is used, instead.)
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @apiNote
* The {@code flatMap()} operation has the effect of applying a one-to-many
* transformation to the elements of the stream, and then flattening the
* resulting elements into a new stream.
*
* <p><b>Examples.</b>
*
* <p>If {@code orders} is a stream of purchase orders, and each purchase
* order contains a collection of line items, then the following produces a
* stream containing all the line items in all the orders:
* <pre>{@code
* orders.flatMap(order -> order.getLineItems().stream())...
* }</pre>
*
* <p>If {@code path} is the path to a file, then the following produces a
* stream of the {@code words} contained in that file:
* <pre>{@code
* Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
* Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
* }</pre>
* The {@code mapper} function passed to {@code flatMap} splits a line,
* using a simple regular expression, into an array of words, and then
* creates a stream of words from that array.
*
* @param <R> The element type of the new stream
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element which produces a stream
* of new values
* @return the new stream
*/
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
/**
* Returns an {@code IntStream} consisting of the results of replacing each
* element of this stream with the contents of a mapped stream produced by
* applying the provided mapping function to each element. Each mapped
* stream is {@link java.util.stream.BaseStream#close() closed} after its
* contents have been placed into this stream. (If a mapped stream is
* {@code null} an empty stream is used, instead.)
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element which produces a stream
* of new values
* @return the new stream
* @see #flatMap(Function)
*/
IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
/**
* Returns an {@code LongStream} consisting of the results of replacing each
* element of this stream with the contents of a mapped stream produced by
* applying the provided mapping function to each element. Each mapped
* stream is {@link java.util.stream.BaseStream#close() closed} after its
* contents have been placed into this stream. (If a mapped stream is
* {@code null} an empty stream is used, instead.)
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element which produces a stream
* of new values
* @return the new stream
* @see #flatMap(Function)
*/
LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
/**
* Returns an {@code DoubleStream} consisting of the results of replacing
* each element of this stream with the contents of a mapped stream produced
* by applying the provided mapping function to each element. Each mapped
* stream is {@link java.util.stream.BaseStream#close() closed} after its
* contents have placed been into this stream. (If a mapped stream is
* {@code null} an empty stream is used, instead.)
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function to apply to each element which produces a stream
* of new values
* @return the new stream
* @see #flatMap(Function)
*/
DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
/**
* Returns a stream consisting of the distinct elements (according to
* {@link Object#equals(Object)}) of this stream.
*
* <p>For ordered streams, the selection of distinct elements is stable
* (for duplicated elements, the element appearing first in the encounter
* order is preserved.) For unordered streams, no stability guarantees
* are made.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @apiNote
* Preserving stability for {@code distinct()} in parallel pipelines is
* relatively expensive (requires that the operation act as a full barrier,
* with substantial buffering overhead), and stability is often not needed.
* Using an unordered stream source (such as {@link #generate(Supplier)})
* or removing the ordering constraint with {@link #unordered()} may result
* in significantly more efficient execution for {@code distinct()} in parallel
* pipelines, if the semantics of your situation permit. If consistency
* with encounter order is required, and you are experiencing poor performance
* or memory utilization with {@code distinct()} in parallel pipelines,
* switching to sequential execution with {@link #sequential()} may improve
* performance.
*
* @return the new stream
*/
Stream<T> distinct();
/**
* Returns a stream consisting of the elements of this stream, sorted
* according to natural order. If the elements of this stream are not
* {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
* when the terminal operation is executed.
*
* <p>For ordered streams, the sort is stable. For unordered streams, no
* stability guarantees are made.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @return the new stream
*/
Stream<T> sorted();
/**
* Returns a stream consisting of the elements of this stream, sorted
* according to the provided {@code Comparator}.
*
* <p>For ordered streams, the sort is stable. For unordered streams, no
* stability guarantees are made.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* {@code Comparator} to be used to compare stream elements
* @return the new stream
*/
Stream<T> sorted(Comparator<? super T> comparator);
/**
* Returns a stream consisting of the elements of this stream, additionally
* performing the provided action on each element as elements are consumed
* from the resulting stream.
*
* <p>This is an <a href="package-summary.html#StreamOps">intermediate
* operation</a>.
*
* <p>For parallel stream pipelines, the action may be called at
* whatever time and in whatever thread the element is made available by the
* upstream operation. If the action modifies shared state,
* it is responsible for providing the required synchronization.
*
* @apiNote This method exists mainly to support debugging, where you want
* to see the elements as they flow past a certain point in a pipeline:
* <pre>{@code
* Stream.of("one", "two", "three", "four")
* .filter(e -> e.length() > 3)
* .peek(e -> System.out.println("Filtered value: " + e))
* .map(String::toUpperCase)
* .peek(e -> System.out.println("Mapped value: " + e))
* .collect(Collectors.toList());
* }</pre>
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements as
* they are consumed from the stream
* @return the new stream
*/
Stream<T> peek(Consumer<? super T> action);
/**
* Returns a stream consisting of the elements of this stream, truncated
* to be no longer than {@code maxSize} in length.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* stateful intermediate operation</a>.
*
* @apiNote
* While {@code limit()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel pipelines,
* especially for large values of {@code maxSize}, since {@code limit(n)}
* is constrained to return not just any <em>n</em> elements, but the
* <em>first n</em> elements in the encounter order. Using an unordered
* stream source (such as {@link #generate(Supplier)}) or removing the
* ordering constraint with {@link #unordered()} may result in significant
* speedups of {@code limit()} in parallel pipelines, if the semantics of
* your situation permit. If consistency with encounter order is required,
* and you are experiencing poor performance or memory utilization with
* {@code limit()} in parallel pipelines, switching to sequential execution
* with {@link #sequential()} may improve performance.
*
* @param maxSize the number of elements the stream should be limited to
* @return the new stream
* @throws IllegalArgumentException if {@code maxSize} is negative
*/
Stream<T> limit(long maxSize);
/**
* Returns a stream consisting of the remaining elements of this stream
* after discarding the first {@code n} elements of the stream.
* If this stream contains fewer than {@code n} elements then an
* empty stream will be returned.
*
* <p>This is a <a href="package-summary.html#StreamOps">stateful
* intermediate operation</a>.
*
* @apiNote
* While {@code skip()} is generally a cheap operation on sequential
* stream pipelines, it can be quite expensive on ordered parallel pipelines,
* especially for large values of {@code n}, since {@code skip(n)}
* is constrained to skip not just any <em>n</em> elements, but the
* <em>first n</em> elements in the encounter order. Using an unordered
* stream source (such as {@link #generate(Supplier)}) or removing the
* ordering constraint with {@link #unordered()} may result in significant
* speedups of {@code skip()} in parallel pipelines, if the semantics of
* your situation permit. If consistency with encounter order is required,
* and you are experiencing poor performance or memory utilization with
* {@code skip()} in parallel pipelines, switching to sequential execution
* with {@link #sequential()} may improve performance.
*
* @param n the number of leading elements to skip
* @return the new stream
* @throws IllegalArgumentException if {@code n} is negative
*/
Stream<T> skip(long n);
/**
* Performs an action for each element of this stream.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* <p>The behavior of this operation is explicitly nondeterministic.
* For parallel stream pipelines, this operation does <em>not</em>
* guarantee to respect the encounter order of the stream, as doing so
* would sacrifice the benefit of parallelism. For any given element, the
* action may be performed at whatever time and in whatever thread the
* library chooses. If the action accesses shared state, it is
* responsible for providing the required synchronization.
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements
*/
void forEach(Consumer<? super T> action);
/**
* Performs an action for each element of this stream, in the encounter
* order of the stream if the stream has a defined encounter order.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* <p>This operation processes the elements one at a time, in encounter
* order if one exists. Performing the action for one element
* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
* performing the action for subsequent elements, but for any given element,
* the action may be performed in whatever thread the library chooses.
*
* @param action a <a href="package-summary.html#NonInterference">
* non-interfering</a> action to perform on the elements
* @see #forEach(Consumer)
*/
void forEachOrdered(Consumer<? super T> action);
/**
* Returns an array containing the elements of this stream.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @return an array containing the elements of this stream
*/
Object[] toArray();
/**
* Returns an array containing the elements of this stream, using the
* provided {@code generator} function to allocate the returned array, as
* well as any additional arrays that might be required for a partitioned
* execution or for resizing.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @apiNote
* The generator function takes an integer, which is the size of the
* desired array, and produces an array of the desired size. This can be
* concisely expressed with an array constructor reference:
* <pre>{@code
* Person[] men = people.stream()
* .filter(p -> p.getGender() == MALE)
* .toArray(Person[]::new);
* }</pre>
*
* @param <A> the element type of the resulting array
* @param generator a function which produces a new array of the desired
* type and the provided length
* @return an array containing the elements in this stream
* @throws ArrayStoreException if the runtime type of the array returned
* from the array generator is not a supertype of the runtime type of every
* element in this stream
*/
<A> A[] toArray(IntFunction<A[]> generator);
/**
* Performs a <a href="package-summary.html#Reduction">reduction</a> on the
* elements of this stream, using the provided identity value and an
* <a href="package-summary.html#Associativity">associative</a>
* accumulation function, and returns the reduced value. This is equivalent
* to:
* <pre>{@code
* T result = identity;
* for (T element : this stream)
* result = accumulator.apply(result, element)
* return result;
* }</pre>
*
* but is not constrained to execute sequentially.
*
* <p>The {@code identity} value must be an identity for the accumulator
* function. This means that for all {@code t},
* {@code accumulator.apply(identity, t)} is equal to {@code t}.
* The {@code accumulator} function must be an
* <a href="package-summary.html#Associativity">associative</a> function.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @apiNote Sum, min, max, average, and string concatenation are all special
* cases of reduction. Summing a stream of numbers can be expressed as:
*
* <pre>{@code
* Integer sum = integers.reduce(0, (a, b) -> a+b);
* }</pre>
*
* or:
*
* <pre>{@code
* Integer sum = integers.reduce(0, Integer::sum);
* }</pre>
*
* <p>While this may seem a more roundabout way to perform an aggregation
* compared to simply mutating a running total in a loop, reduction
* operations parallelize more gracefully, without needing additional
* synchronization and with greatly reduced risk of data races.
*
* @param identity the identity value for the accumulating function
* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values
* @return the result of the reduction
*/
T reduce(T identity, BinaryOperator<T> accumulator);
/**
* Performs a <a href="package-summary.html#Reduction">reduction</a> on the
* elements of this stream, using an
* <a href="package-summary.html#Associativity">associative</a> accumulation
* function, and returns an {@code Optional} describing the reduced value,
* if any. This is equivalent to:
* <pre>{@code
* boolean foundAny = false;
* T result = null;
* for (T element : this stream) {
* if (!foundAny) {
* foundAny = true;
* result = element;
* }
* else
* result = accumulator.apply(result, element);
* }
* return foundAny ? Optional.of(result) : Optional.empty();
* }</pre>
*
* but is not constrained to execute sequentially.
*
* <p>The {@code accumulator} function must be an
* <a href="package-summary.html#Associativity">associative</a> function.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values
* @return an {@link Optional} describing the result of the reduction
* @throws NullPointerException if the result of the reduction is null
* @see #reduce(Object, BinaryOperator)
* @see #min(Comparator)
* @see #max(Comparator)
*/
Optional<T> reduce(BinaryOperator<T> accumulator);
/**
* Performs a <a href="package-summary.html#Reduction">reduction</a> on the
* elements of this stream, using the provided identity, accumulation and
* combining functions. This is equivalent to:
* <pre>{@code
* U result = identity;
* for (T element : this stream)
* result = accumulator.apply(result, element)
* return result;
* }</pre>
*
* but is not constrained to execute sequentially.
*
* <p>The {@code identity} value must be an identity for the combiner
* function. This means that for all {@code u}, {@code combiner(identity, u)}
* is equal to {@code u}. Additionally, the {@code combiner} function
* must be compatible with the {@code accumulator} function; for all
* {@code u} and {@code t}, the following must hold:
* <pre>{@code
* combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
* }</pre>
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @apiNote Many reductions using this form can be represented more simply
* by an explicit combination of {@code map} and {@code reduce} operations.
* The {@code accumulator} function acts as a fused mapper and accumulator,
* which can sometimes be more efficient than separate mapping and reduction,
* such as when knowing the previously reduced value allows you to avoid
* some computation.
*
* @param <U> The type of the result
* @param identity the identity value for the combiner function
* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for incorporating an additional element into a result
* @param combiner an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values, which must be
* compatible with the accumulator function
* @return the result of the reduction
* @see #reduce(BinaryOperator)
* @see #reduce(Object, BinaryOperator)
*/
<U> U reduce(U identity,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner);
/**
* Performs a <a href="package-summary.html#MutableReduction">mutable
* reduction</a> operation on the elements of this stream. A mutable
* reduction is one in which the reduced value is a mutable result container,
* such as an {@code ArrayList}, and elements are incorporated by updating
* the state of the result rather than by replacing the result. This
* produces a result equivalent to:
* <pre>{@code
* R result = supplier.get();
* for (T element : this stream)
* accumulator.accept(result, element);
* return result;
* }</pre>
*
* <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
* can be parallelized without requiring additional synchronization.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @apiNote There are many existing classes in the JDK whose signatures are
* well-suited for use with method references as arguments to {@code collect()}.
* For example, the following will accumulate strings into an {@code ArrayList}:
* <pre>{@code
* List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
* ArrayList::addAll);
* }</pre>
*
* <p>The following will take a stream of strings and concatenates them into a
* single string:
* <pre>{@code
* String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
* StringBuilder::append)
* .toString();
* }</pre>
*
* @param <R> type of the result
* @param supplier a function that creates a new result container. For a
* parallel execution, this function may be called
* multiple times and must return a fresh value each time.
* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for incorporating an additional element into a result
* @param combiner an <a href="package-summary.html#Associativity">associative</a>,
* <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* function for combining two values, which must be
* compatible with the accumulator function
* @return the result of the reduction
*/
<R> R collect(Supplier<R> supplier,
BiConsumer<R, ? super T> accumulator,
BiConsumer<R, R> combiner);
/**
* Performs a <a href="package-summary.html#MutableReduction">mutable
* reduction</a> operation on the elements of this stream using a
* {@code Collector}. A {@code Collector}
* encapsulates the functions used as arguments to
* {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
* collection strategies and composition of collect operations such as
* multiple-level grouping or partitioning.
*
* <p>If the stream is parallel, and the {@code Collector}
* is {@link Collector.Characteristics#CONCURRENT concurrent}, and
* either the stream is unordered or the collector is
* {@link Collector.Characteristics#UNORDERED unordered},
* then a concurrent reduction will be performed (see {@link Collector} for
* details on concurrent reduction.)
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* <p>When executed in parallel, multiple intermediate results may be
* instantiated, populated, and merged so as to maintain isolation of
* mutable data structures. Therefore, even when executed in parallel
* with non-thread-safe data structures (such as {@code ArrayList}), no
* additional synchronization is needed for a parallel reduction.
*
* @apiNote
* The following will accumulate strings into an ArrayList:
* <pre>{@code
* List<String> asList = stringStream.collect(Collectors.toList());
* }</pre>
*
* <p>The following will classify {@code Person} objects by city:
* <pre>{@code
* Map<String, List<Person>> peopleByCity
* = personStream.collect(Collectors.groupingBy(Person::getCity));
* }</pre>
*
* <p>The following will classify {@code Person} objects by state and city,
* cascading two {@code Collector}s together:
* <pre>{@code
* Map<String, Map<String, List<Person>>> peopleByStateAndCity
* = personStream.collect(Collectors.groupingBy(Person::getState,
* Collectors.groupingBy(Person::getCity)));
* }</pre>
*
* @param <R> the type of the result
* @param <A> the intermediate accumulation type of the {@code Collector}
* @param collector the {@code Collector} describing the reduction
* @return the result of the reduction
* @see #collect(Supplier, BiConsumer, BiConsumer)
* @see Collectors
*/
<R, A> R collect(Collector<? super T, A, R> collector);
/**
* Returns the minimum element of this stream according to the provided
* {@code Comparator}. This is a special case of a
* <a href="package-summary.html#Reduction">reduction</a>.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
*
* @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* {@code Comparator} to compare elements of this stream
* @return an {@code Optional} describing the minimum element of this stream,
* or an empty {@code Optional} if the stream is empty
* @throws NullPointerException if the minimum element is null
*/
Optional<T> min(Comparator<? super T> comparator);
/**
* Returns the maximum element of this stream according to the provided
* {@code Comparator}. This is a special case of a
* <a href="package-summary.html#Reduction">reduction</a>.
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal
* operation</a>.
*
* @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* {@code Comparator} to compare elements of this stream
* @return an {@code Optional} describing the maximum element of this stream,
* or an empty {@code Optional} if the stream is empty
* @throws NullPointerException if the maximum element is null
*/
Optional<T> max(Comparator<? super T> comparator);
/**
* Returns the count of elements in this stream. This is a special case of
* a <a href="package-summary.html#Reduction">reduction</a> and is
* equivalent to:
* <pre>{@code
* return mapToLong(e -> 1L).sum();
* }</pre>
*
* <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
*
* @return the count of elements in this stream
*/
long count();
/**
* Returns whether any elements of this stream match the provided
* predicate. May not evaluate the predicate on all elements if not
* necessary for determining the result. If the stream is empty then
* {@code false} is returned and the predicate is not evaluated.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* terminal operation</a>.
*
* @apiNote
* This method evaluates the <em>existential quantification</em> of the
* predicate over the elements of the stream (for some x P(x)).
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to elements of this stream
* @return {@code true} if any elements of the stream match the provided
* predicate, otherwise {@code false}
*/
boolean anyMatch(Predicate<? super T> predicate);
/**
* Returns whether all elements of this stream match the provided predicate.
* May not evaluate the predicate on all elements if not necessary for
* determining the result. If the stream is empty then {@code true} is
* returned and the predicate is not evaluated.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* terminal operation</a>.
*
* @apiNote
* This method evaluates the <em>universal quantification</em> of the
* predicate over the elements of the stream (for all x P(x)). If the
* stream is empty, the quantification is said to be <em>vacuously
* satisfied</em> and is always {@code true} (regardless of P(x)).
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to elements of this stream
* @return {@code true} if either all elements of the stream match the
* provided predicate or the stream is empty, otherwise {@code false}
*/
boolean allMatch(Predicate<? super T> predicate);
/**
* Returns whether no elements of this stream match the provided predicate.
* May not evaluate the predicate on all elements if not necessary for
* determining the result. If the stream is empty then {@code true} is
* returned and the predicate is not evaluated.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* terminal operation</a>.
*
* @apiNote
* This method evaluates the <em>universal quantification</em> of the
* negated predicate over the elements of the stream (for all x ~P(x)). If
* the stream is empty, the quantification is said to be vacuously satisfied
* and is always {@code true}, regardless of P(x).
*
* @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
* <a href="package-summary.html#Statelessness">stateless</a>
* predicate to apply to elements of this stream
* @return {@code true} if either no elements of the stream match the
* provided predicate or the stream is empty, otherwise {@code false}
*/
boolean noneMatch(Predicate<? super T> predicate);
/**
* Returns an {@link Optional} describing the first element of this stream,
* or an empty {@code Optional} if the stream is empty. If the stream has
* no encounter order, then any element may be returned.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* terminal operation</a>.
*
* @return an {@code Optional} describing the first element of this stream,
* or an empty {@code Optional} if the stream is empty
* @throws NullPointerException if the element selected is null
*/
Optional<T> findFirst();
/**
* Returns an {@link Optional} describing some element of the stream, or an
* empty {@code Optional} if the stream is empty.
*
* <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
* terminal operation</a>.
*
* <p>The behavior of this operation is explicitly nondeterministic; it is
* free to select any element in the stream. This is to allow for maximal
* performance in parallel operations; the cost is that multiple invocations
* on the same source may not return the same result. (If a stable result
* is desired, use {@link #findFirst()} instead.)
*
* @return an {@code Optional} describing some element of this stream, or an
* empty {@code Optional} if the stream is empty
* @throws NullPointerException if the element selected is null
* @see #findFirst()
*/
Optional<T> findAny();
// Static factories
/**
* Returns a builder for a {@code Stream}.
*
* @param <T> type of elements
* @return a stream builder
*/
public static<T> Builder<T> builder() {
return new Streams.StreamBuilderImpl<>();
}
/**
* Returns an empty sequential {@code Stream}.
*
* @param <T> the type of stream elements
* @return an empty sequential stream
*/
public static<T> Stream<T> empty() {
return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);
}
/**
* Returns a sequential {@code Stream} containing a single element.
*
* @param t the single element
* @param <T> the type of stream elements
* @return a singleton sequential stream
*/
public static<T> Stream<T> of(T t) {
return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
}
/**
* Returns a sequential ordered stream whose elements are the specified values.
*
* @param <T> the type of stream elements
* @param values the elements of the new stream
* @return the new stream
*/
@SafeVarargs
@SuppressWarnings("varargs") // Creating a stream from an array is safe
public static<T> Stream<T> of(T... values) {
return Arrays.stream(values);
}
/**
* Returns an infinite sequential ordered {@code Stream} produced by iterative
* application of a function {@code f} to an initial element {@code seed},
* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
* {@code f(f(seed))}, etc.
*
* <p>The first element (position {@code 0}) in the {@code Stream} will be
* the provided {@code seed}. For {@code n > 0}, the element at position
* {@code n}, will be the result of applying the function {@code f} to the
* element at position {@code n - 1}.
*
* @param <T> the type of stream elements
* @param seed the initial element
* @param f a function to be applied to to the previous element to produce
* a new element
* @return a new sequential {@code Stream}
*/
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
Objects.requireNonNull(f);
final Iterator<T> iterator = new Iterator<T>() {
@SuppressWarnings("unchecked")
T t = (T) Streams.NONE;
@Override
public boolean hasNext() {
return true;
}
@Override
public T next() {
return t = (t == Streams.NONE) ? seed : f.apply(t);
}
};
return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator,
Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
}
/**
* Returns an infinite sequential unordered stream where each element is
* generated by the provided {@code Supplier}. This is suitable for
* generating constant streams, streams of random elements, etc.
*
* @param <T> the type of stream elements
* @param s the {@code Supplier} of generated elements
* @return a new infinite sequential unordered {@code Stream}
*/
public static<T> Stream<T> generate(Supplier<T> s) {
Objects.requireNonNull(s);
return StreamSupport.stream(
new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);
}
/**
* Creates a lazily concatenated stream whose elements are all the
* elements of the first stream followed by all the elements of the
* second stream. The resulting stream is ordered if both
* of the input streams are ordered, and parallel if either of the input
* streams is parallel. When the resulting stream is closed, the close
* handlers for both input streams are invoked.
*
* @implNote
* Use caution when constructing streams from repeated concatenation.
* Accessing an element of a deeply concatenated stream can result in deep
* call chains, or even {@code StackOverflowException}.
*
* @param <T> The type of stream elements
* @param a the first stream
* @param b the second stream
* @return the concatenation of the two input streams
*/
public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
Objects.requireNonNull(a);
Objects.requireNonNull(b);
@SuppressWarnings("unchecked")
Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
(Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
return stream.onClose(Streams.composedClose(a, b));
}
/**
* A mutable builder for a {@code Stream}. This allows the creation of a
* {@code Stream} by generating elements individually and adding them to the
* {@code Builder} (without the copying overhead that comes from using
* an {@code ArrayList} as a temporary buffer.)
*
* <p>A stream builder has a lifecycle, which starts in a building
* phase, during which elements can be added, and then transitions to a built
* phase, after which elements may not be added. The built phase begins
* when the {@link #build()} method is called, which creates an ordered
* {@code Stream} whose elements are the elements that were added to the stream
* builder, in the order they were added.
*
* @param <T> the type of stream elements
* @see Stream#builder()
* @since 1.8
*/
public interface Builder<T> extends Consumer<T> {
/**
* Adds an element to the stream being built.
*
* @throws IllegalStateException if the builder has already transitioned to
* the built state
*/
@Override
void accept(T t);
/**
* Adds an element to the stream being built.
*
* @implSpec
* The default implementation behaves as if:
* <pre>{@code
* accept(t)
* return this;
* }</pre>
*
* @param t the element to add
* @return {@code this} builder
* @throws IllegalStateException if the builder has already transitioned to
* the built state
*/
default Builder<T> add(T t) {
accept(t);
return this;
}
/**
* Builds the stream, transitioning this builder to the built state.
* An {@code IllegalStateException} is thrown if there are further attempts
* to operate on the builder after it has entered the built state.
*
* @return the built stream
* @throws IllegalStateException if the builder has already transitioned to
* the built state
*/
Stream<T> build();
}
}
只是,这接口中定义的参数,都是些经过特殊定义的接口,即函数式接口,即默认只需实现一个方法即可接口类定义。
3. stream包的具体实现?
如上一节,我们已知stream中主要依赖于许多的接口定义。既然是接口,那就必然无法直接调用,须要有与之对应的实现方可调用。所以,我们需要有特定的场景,才可以来谈stream 的实现问题。
所以,我们先以相对简单的 Integer 的流转化与处理过程,一探stream究竟。
// java.util.Arrays#stream(T[])
/**
* Returns a sequential {@link Stream} with the specified array as its
* source.
*
* @param <T> The type of the array elements
* @param array The array, assumed to be unmodified during use
* @return a {@code Stream} for the array
* @since 1.8
*/
public static <T> Stream<T> stream(T[] array) {
return stream(array, 0, array.length);
}
// java.util.Arrays#stream(T[], int, int)
/**
* Returns a sequential {@link Stream} with the specified range of the
* specified array as its source.
*
* @param <T> the type of the array elements
* @param array the array, assumed to be unmodified during use
* @param startInclusive the first index to cover, inclusive
* @param endExclusive index immediately past the last index to cover
* @return a {@code Stream} for the array range
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
* negative, {@code endExclusive} is less than
* {@code startInclusive}, or {@code endExclusive} is greater than
* the array size
* @since 1.8
*/
public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) {
// 构造 iterator, 带入 StreamSupport 中
return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);
}
/**
* Returns a {@link Spliterator} covering the specified range of the
* specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param <T> type of elements
* @param array the array, assumed to be unmodified during use
* @param startInclusive the first index to cover, inclusive
* @param endExclusive index immediately past the last index to cover
* @return a spliterator for the array elements
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
* negative, {@code endExclusive} is less than
* {@code startInclusive}, or {@code endExclusive} is greater than
* the array size
* @since 1.8
*/
public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) {
return Spliterators.spliterator(array, startInclusive, endExclusive,
Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
// java.util.stream.StreamSupport#stream(java.util.Spliterator<T>, boolean)
/**
* Creates a new sequential or parallel {@code Stream} from a
* {@code Spliterator}.
*
* <p>The spliterator is only traversed, split, or queried for estimated
* size after the terminal operation of the stream pipeline commences.
*
* <p>It is strongly recommended the spliterator report a characteristic of
* {@code IMMUTABLE} or {@code CONCURRENT}, or be
* <a href="../Spliterator.html#binding">late-binding</a>. Otherwise,
* {@link #stream(java.util.function.Supplier, int, boolean)} should be used
* to reduce the scope of potential interference with the source. See
* <a href="package-summary.html#NonInterference">Non-Interference</a> for
* more details.
*
* @param <T> the type of stream elements
* @param spliterator a {@code Spliterator} describing the stream elements
* @param parallel if {@code true} then the returned stream is a parallel
* stream; if {@code false} the returned stream is a sequential
* stream.
* @return a new sequential or parallel {@code Stream}
*/
public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
Objects.requireNonNull(spliterator);
return new ReferencePipeline.Head<>(spliterator,
StreamOpFlag.fromCharacteristics(spliterator),
parallel);
}
// java.util.stream.ReferencePipeline.Head#Head(java.util.Spliterator<?>, int, boolean)
/**
* Constructor for the source stage of a Stream.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags the source flags for the stream source, described
* in {@link StreamOpFlag}
*/
Head(Spliterator<?> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
// java.util.stream.ReferencePipeline#ReferencePipeline(java.util.Spliterator<?>, int, boolean)
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
ReferencePipeline(Spliterator<?> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
// java.util.stream.AbstractPipeline#AbstractPipeline(java.util.Spliterator<?>, int, boolean)
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags the source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
AbstractPipeline(Spliterator<?> source,
int sourceFlags, boolean parallel) {
this.previousStage = null;
this.sourceSpliterator = source;
this.sourceStage = this;
this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
// The following is an optimization of:
// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
this.depth = 0;
this.parallel = parallel;
}
如上,就返回了一 Stream 的具体实例,即是 ReferencePipeline.Head 的实例。故而,之后的每个stream操作如 filter,map,foreach方法,都尽在该 head 中进行实现了。一瞅便知。
// java.util.stream.ReferencePipeline#filter
@Override
public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
Objects.requireNonNull(predicate);
// 只返回了一个 StreamlessOp实例
return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SIZED) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(P_OUT u) {
// 在必要时候调用 test() 方法即可
// 当test返回 true 时,该元素被保留传入下一级调用中,此即filter的语义
if (predicate.test(u))
downstream.accept(u);
}
};
}
};
}
// java.util.stream.ReferencePipeline#map
@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
Objects.requireNonNull(mapper);
// 同样,仅返回一个 StatelessOp 的实例
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void accept(P_OUT u) {
// 同样,在必要的时候调用 apply 方法
// 即 map 的语义为 每个元素都会调用该方法
downstream.accept(mapper.apply(u));
}
};
}
};
}
@Override
public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {
Objects.requireNonNull(mapper);
// We can do better than this, by polling cancellationRequested when stream is infinite
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(P_OUT u) {
// flatmap 语义,所得结果,依次往下传输
try (Stream<? extends R> result = mapper.apply(u)) {
// We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
if (result != null)
result.sequential().forEach(downstream);
}
}
};
}
};
}
如上,几个方法调用下来,我们基本都可以看到,都是一个个的 StatelessOp 的实例的返回,但都没有触发真正的计算。那么,真正计算又要到几时呢?相信有些其他知识面的你,定然会想到,在合适的时候再来触发真正的运算操作。当数据结构不会发生本质的变化时,这种平衡就是存在的。只是在一些关键时候,才会触发运算。这为后续进行并行计算或者性能优化提供了可能。
那么,stream包中,哪些运算是作为真正的触发行为呢?至少 collect(), foreach(), reduce() 是会进行触发的。这些优化手段,不知和其他框架实现,谁先谁后,谁主谁从。反正,总是好的想法。在其他地方,也许叫许多算子。
我们以collect()探查如何使用这stream的威力?
// java.util.stream.ReferencePipeline#collect(java.util.stream.Collector<? super P_OUT,A,R>)
@Override
@SuppressWarnings("unchecked")
public final <R, A> R collect(Collector<? super P_OUT, A, R> collector) {
A container;
// 即分并行与串行
if (isParallel()
&& (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
&& (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
container = collector.supplier().get();
BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator();
forEach(u -> accumulator.accept(container, u));
}
else {
// 串行执行
container = evaluate(ReduceOps.makeRef(collector));
}
return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)
? (R) container
: collector.finisher().apply(container);
}
/**
* Constructs a {@code TerminalOp} that implements a mutable reduce on
* reference values.
*
* @param <T> the type of the input elements
* @param <I> the type of the intermediate reduction result
* @param collector a {@code Collector} defining the reduction
* @return a {@code ReduceOp} implementing the reduction
*/
public static <T, I> TerminalOp<T, I>
makeRef(Collector<? super T, I, ?> collector) {
Supplier<I> supplier = Objects.requireNonNull(collector).supplier();
BiConsumer<I, ? super T> accumulator = collector.accumulator();
BinaryOperator<I> combiner = collector.combiner();
class ReducingSink extends Box<I>
implements AccumulatingSink<T, I, ReducingSink> {
@Override
public void begin(long size) {
state = supplier.get();
}
@Override
public void accept(T t) {
accumulator.accept(state, t);
}
@Override
public void combine(ReducingSink other) {
state = combiner.apply(state, other.state);
}
}
// 返回ReuceOp
return new ReduceOp<T, I, ReducingSink>(StreamShape.REFERENCE) {
@Override
public ReducingSink makeSink() {
return new ReducingSink();
}
@Override
public int getOpFlags() {
return collector.characteristics().contains(Collector.Characteristics.UNORDERED)
? StreamOpFlag.NOT_ORDERED
: 0;
}
};
}
// 运算一系列任务
/**
* Evaluate the pipeline with a terminal operation to produce a result.
*
* @param <R> the type of result
* @param terminalOp the terminal operation to be applied to the pipeline.
* @return the result
*/
final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
assert getOutputShape() == terminalOp.inputShape();
if (linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
linkedOrConsumed = true;
return isParallel()
? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
: terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}
// java.util.stream.ReduceOps.ReduceOp#evaluateSequential
@Override
public <P_IN> R evaluateSequential(PipelineHelper<T> helper,
Spliterator<P_IN> spliterator) {
return helper.wrapAndCopyInto(makeSink(), spliterator).get();
}
// java.util.stream.AbstractPipeline#wrapAndCopyInto
@Override
final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
return sink;
}
// java.util.stream.AbstractPipeline#wrapSink
@Override
@SuppressWarnings("unchecked")
final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
Objects.requireNonNull(sink);
// 基本是按照倒序来排的
for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
// 一层层包装算子
sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
}
return (Sink<P_IN>) sink;
}
// java.util.stream.AbstractPipeline#copyInto
@Override
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
Objects.requireNonNull(wrappedSink);
// 依次调用 begin, foreach, end 方法
if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
wrappedSink.begin(spliterator.getExactSizeIfKnown());
// 每个元素依次迭代, 一层层退出来
spliterator.forEachRemaining(wrappedSink);
wrappedSink.end();
}
else {
copyIntoWithCancel(wrappedSink, spliterator);
}
}
// java.util.Spliterators.ArraySpliterator#forEachRemaining
@SuppressWarnings("unchecked")
@Override
public void forEachRemaining(Consumer<? super T> action) {
Object[] a; int i, hi; // hoist accesses and checks from loop
if (action == null)
throw new NullPointerException();
if ((a = array).length >= (hi = fence) &&
(i = index) >= 0 && i < (index = hi)) {
do { action.accept((T)a[i]); } while (++i < hi);
}
}
可见,该stream包的实现中,大量使用了包装器模式,责任链模式,模板方法模式,以及在必要的节点再进行统一的运算触发。且在必要的时候开启并行计算,为上层应用带了各种可能。在使用起来极其简单的同时,又兼顾了性能。(我说的不是通常的性能,比如我自己写几个简单的filter岂不性能更好?)而以上,仅仅是 stream 中的一种实现,针对每个不同类型的数据,其处理方式自然不一样。比如 IntStream, DoubleStream, LongStream 虽同为Stream,但特性都都不一样,不能一概而论。当然,一般这些实现都会遵守一定的接口规范。
其中,以上这些简便的写法,得益于lamda语法的支持,以及几个简单的函数式接口定义。比如 Consumer, Function... 它们都被定义在java.util.function包下面。
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
话说为何单叫lamda式写法又叫作函数式编程?想来原因有二,一是调用手法像是函数一般,只须传入参数即可调用,二来lamda实现方式为生出静态函数调用而成。不知是也不是。
腾讯、阿里、滴滴后台面试题汇总总结 — (含答案)
面试:史上最全多线程面试题 !
最新阿里内推Java后端面试题
JVM难学?那是因为你没认真看完这篇文章
关注作者微信公众号 —《JAVA烂猪皮》
了解更多java后端架构知识以及最新面试宝典
看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
作者:等你归去来
出处:https://www.cnblogs.com/yougewe/p/14879246.html