谈谈stream的运行原理
害,别误会,我这里说的stream不是流式编程,不是大数据处理框架。我这里说的是stream指的是jdk中的一个开发工具包stream. 该工具包在jdk8中出现,可以说已经是冷饭了,为何还要你说?只因各家一言,不算得自家理解,如若有空,何多听一版又何妨。
本篇主要从几个方面讲讲:1. 我们常见的stream都有哪些?2. stream包有哪些好处?3. stream包的实现原理?相信这些多少会解开大家的一些迷惑。
1:我们常见的stream都有哪些?
stream直接翻译为流。何谓流?我们最常见的,比如网络中的数据传输,即tcp/udp那一套东西,都是建立在二进制流的基础上的。用流来形容这些数据或文件的传输,非常形象,因为数据总是源源不断地从一端流向另一端,这是不流是什么。只是,传输到另一端之后,我们再做解析,便有了数据或文件之说。其实这说的,便是高层协议了。
另说一个stream, 那就是jdk中的各种InputStream了,它用于读取文件数据,读取byte数据,其实也是源源不断将数据从一个设备流入到另一设备。jdk中有InputStream/OutputStream, 作为根基,其上则是各种 FileInputStream, FileOutputStream, FileReader, FileWriter,... 实际上,整个io包几乎都是在围绕流这个概念来展开的。可见,io是相当的重要啊。
再说一stream, 则是对大数据的处理了,stream,即是实时数据处理的重要技术实现,因与实时二字吻合,恰好又类似于数据从一设备流入另一设备,且是实时的。所以,stream在大数据领域也是大放异彩啊!比如 spark, flink 你可知?比如 图数据库语言标准 gremlin 的算子。
还有更多的流概念,更多的流实现,不必细说,也无法细说。单只知道,流无处不在,非常重要。
还有本文要议的stream包,到底是何生物,且看后续说来。
2. stream包有何好处?
stream包,在java中是以一个工具包的形式存在,即你用则以,不用亦可。
那么,用它到底有何好处?好处主要有二:1.可以减少冗余代码的编写;比如要写一个过滤器则只需调用一filter()传入处理逻辑即可;2.可以很方便的利用一些隐藏的升级好处或者多核带来的好处;(当然你可能用不上这些好处)
说实话,这两个功能,看起来实际没有太多的诱惑力,但凡我们封装几个方法,供外部调用,不也可以达到同等效果?是了!如果你有这等造诣,能够抽象出足够通用的方法,供各方使用,那你不算大牛何人算?说到底,stream也就是高手封装的工具包而已。
来几个应用实例,看看stream都如何使用的:
public class StreamUtilTest {@Testpublic void testArrayStream() {// 1. 过滤值;改变值;排序;Integer[] intArr = {1, 2, 3, 5, 22, 8, 5};List<Integer> iArrList = Arrays.stream(intArr).filter(r -> r < 20).map(r -> r + 1).sorted().collect(Collectors.toList());System.out.println("result:" + iArrList);String[] strArr = {"a1,a2", "q,y,h", "ddd,bb,n", null};// 2. 过滤数组;拆分值;输出;Arrays.stream(strArr).filter(Objects::nonNull).flatMap(r -> Arrays.stream(r.split(","))).forEach(System.out::println);}@Testpublic void testListStream() {List<String> list = new ArrayList<>();list.add("ab");list.add("ccc");list.add("ddd");// 3. 求list中的最大值Optional<String> maxStr = list.stream().max(Comparator.naturalOrder());System.out.println(maxStr);}}
害,不必纠结里面干的事情复不复杂,有没有意义,只知道有这用法即可。反正就当你会这么用,即能解决这般问题。这也是我们高级语言使用必备技能,学会调用api.
不过需要说明的,java中有一句老话,叫做万事万物皆对象。但见上面的写法,自然不太像对象。是了,这是lamda语法,虽说另一主题,但何妨在此处一题。但既然说到这,不妨来想想这lamda到底是何物?从某种角度来说,它可以看作是一种内部类,不过写法不太一样。但是当我们仔细观察class文件的变化情况时,发现它与内部类又不太一致,因为java的内部类会在class中生成$xx.class的类文件,而lamda表达式却不会。但是不管怎么样,它是可以使用内部类的表达方式获得同样的效果,只需将该类代入到其中,即可达到同样的效果。
但要细说lamda表达式,则可以反编译下class文件,可以见些许端倪。
# 调用lamda表达式示例...59: invokestatic #4 // Method java/util/Arrays.stream:([Ljava/lang/Object;)Ljava/util/stream/Stream;62: invokedynamic #5, 0 // InvokeDynamic #0:test:()Ljava/util/function/Predicate;67: invokeinterface #6, 2 // InterfaceMethod java/util/stream/Stream.filter:(Ljava/util/function/Predicate;)Ljava/util/stream/Stream;72: invokedynamic #7, 0 // InvokeDynamic #1:apply:()Ljava/util/function/Function;77: invokeinterface #8, 2 // InterfaceMethod java/util/stream/Stream.map:(Ljava/util/function/Function;)Ljava/util/stream/Stream;...# 常量池定义,实际是定义了lamda的实现方式为 #0 号方法#5 = InvokeDynamic #0:#102 // #0:test:()Ljava/util/function/Predicate;# lamda表达式的具体实现1示例BootstrapMethods:0: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;Method arguments:#99 (Ljava/lang/Object;)Z// 此处为调用具体的实现方法#100 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$0:(Ljava/lang/Integer;)Z#101 (Ljava/lang/Integer;)Z1: #98 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;Method arguments:#105 (Ljava/lang/Object;)Ljava/lang/Object;#106 invokestatic com/my/test/common/util/StreamUtilTest.lambda$testArrayStream$1:(Ljava/lang/Integer;)Ljava/lang/Integer;#107 (Ljava/lang/Integer;)Ljava/lang/Integer;# lamda表达式具体实现2, 上一步的静态调用private static boolean lambda$testArrayStream$0(java.lang.Integer);descriptor: (Ljava/lang/Integer;)Zflags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETICCode:stack=2, locals=1, args_size=10: aload_01: invokevirtual #48 // Method java/lang/Integer.intValue:()I4: bipush 206: if_icmpge 139: iconst_110: goto 1413: iconst_014: ireturnLineNumberTable:line 16: 0LocalVariableTable:Start Length Slot Name Signature0 15 0 r Ljava/lang/Integer;StackMapTable: number_of_entries = 2frame_type = 13 /* same */frame_type = 64 /* same_locals_1_stack_item */stack = [ int ]MethodParameters:Name Flagsr synthetic
害,往深了就不说了。单说这lamda表达式,并非使用内部类来实现的,而是使用内部静态函数来做的,所以也叫函数式编程呢。烦话休提。
最后,再来看看,这stream包究竟有何神圣地方?其实,就是一个以一个 Stream 接口定义为核心展开的,且看如下:
/*** A sequence of elements supporting sequential and parallel aggregate* operations. The following example illustrates an aggregate operation using* {@link Stream} and {@link IntStream}:** <pre>{@code* int sum = widgets.stream()* .filter(w -> w.getColor() == RED)* .mapToInt(w -> w.getWeight())* .sum();* }</pre>** In this example, {@code widgets} is a {@code Collection<Widget>}. We create* a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},* filter it to produce a stream containing only the red widgets, and then* transform it into a stream of {@code int} values representing the weight of* each red widget. Then this stream is summed to produce a total weight.** <p>In addition to {@code Stream}, which is a stream of object references,* there are primitive specializations for {@link IntStream}, {@link LongStream},* and {@link DoubleStream}, all of which are referred to as "streams" and* conform to the characteristics and restrictions described here.** <p>To perform a computation, stream* <a href="package-summary.html#StreamOps">operations</a> are composed into a* <em>stream pipeline</em>. A stream pipeline consists of a source (which* might be an array, a collection, a generator function, an I/O channel,* etc), zero or more <em>intermediate operations</em> (which transform a* stream into another stream, such as {@link Stream#filter(Predicate)}), and a* <em>terminal operation</em> (which produces a result or side-effect, such* as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).* Streams are lazy; computation on the source data is only performed when the* terminal operation is initiated, and source elements are consumed only* as needed.** <p>Collections and streams, while bearing some superficial similarities,* have different goals. Collections are primarily concerned with the efficient* management of, and access to, their elements. By contrast, streams do not* provide a means to directly access or manipulate their elements, and are* instead concerned with declaratively describing their source and the* computational operations which will be performed in aggregate on that source.* However, if the provided stream operations do not offer the desired* functionality, the {@link #iterator()} and {@link #spliterator()} operations* can be used to perform a controlled traversal.** <p>A stream pipeline, like the "widgets" example above, can be viewed as* a <em>query</em> on the stream source. Unless the source was explicitly* designed for concurrent modification (such as a {@link ConcurrentHashMap}),* unpredictable or erroneous behavior may result from modifying the stream* source while it is being queried.** <p>Most stream operations accept parameters that describe user-specified* behavior, such as the lambda expression {@code w -> w.getWeight()} passed to* {@code mapToInt} in the example above. To preserve correct behavior,* these <em>behavioral parameters</em>:* <ul>* <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>* (they do not modify the stream source); and</li>* <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>* (their result should not depend on any state that might change during execution* of the stream pipeline).</li>* </ul>** <p>Such parameters are always instances of a* <a href="../function/package-summary.html">functional interface</a> such* as {@link java.util.function.Function}, and are often lambda expressions or* method references. Unless otherwise specified these parameters must be* <em>non-null</em>.** <p>A stream should be operated on (invoking an intermediate or terminal stream* operation) only once. This rules out, for example, "forked" streams, where* the same source feeds two or more pipelines, or multiple traversals of the* same stream. A stream implementation may throw {@link IllegalStateException}* if it detects that the stream is being reused. However, since some stream* operations may return their receiver rather than a new stream object, it may* not be possible to detect reuse in all cases.** <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},* but nearly all stream instances do not actually need to be closed after use.* Generally, only streams whose source is an IO channel (such as those returned* by {@link Files#lines(Path, Charset)}) will require closing. Most streams* are backed by collections, arrays, or generating functions, which require no* special resource management. (If a stream does require closing, it can be* declared as a resource in a {@code try}-with-resources statement.)** <p>Stream pipelines may execute either sequentially or in* <a href="package-summary.html#Parallelism">parallel</a>. This* execution mode is a property of the stream. Streams are created* with an initial choice of sequential or parallel execution. (For example,* {@link Collection#stream() Collection.stream()} creates a sequential stream,* and {@link Collection#parallelStream() Collection.parallelStream()} creates* a parallel one.) This choice of execution mode may be modified by the* {@link #sequential()} or {@link #parallel()} methods, and may be queried with* the {@link #isParallel()} method.** @param <T> the type of the stream elements* @since 1.8* @see IntStream* @see LongStream* @see DoubleStream* @see <a href="package-summary.html">java.util.stream</a>*/public interface Stream<T> extends BaseStream<T, Stream<T>> {/*** Returns a stream consisting of the elements of this stream that match* the given predicate.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to each element to determine if it* should be included* @return the new stream*/Stream<T> filter(Predicate<? super T> predicate);/*** Returns a stream consisting of the results of applying the given* function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param <R> The element type of the new stream* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/<R> Stream<R> map(Function<? super T, ? extends R> mapper);/*** Returns an {@code IntStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">* intermediate operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/IntStream mapToInt(ToIntFunction<? super T> mapper);/*** Returns a {@code LongStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/LongStream mapToLong(ToLongFunction<? super T> mapper);/*** Returns a {@code DoubleStream} consisting of the results of applying the* given function to the elements of this stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element* @return the new stream*/DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);/*** Returns a stream consisting of the results of replacing each element of* this stream with the contents of a mapped stream produced by applying* the provided mapping function to each element. Each mapped stream is* {@link java.util.stream.BaseStream#close() closed} after its contents* have been placed into this stream. (If a mapped stream is {@code null}* an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @apiNote* The {@code flatMap()} operation has the effect of applying a one-to-many* transformation to the elements of the stream, and then flattening the* resulting elements into a new stream.** <p><b>Examples.</b>** <p>If {@code orders} is a stream of purchase orders, and each purchase* order contains a collection of line items, then the following produces a* stream containing all the line items in all the orders:* <pre>{@code* orders.flatMap(order -> order.getLineItems().stream())...* }</pre>** <p>If {@code path} is the path to a file, then the following produces a* stream of the {@code words} contained in that file:* <pre>{@code* Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);* Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));* }</pre>* The {@code mapper} function passed to {@code flatMap} splits a line,* using a simple regular expression, into an array of words, and then* creates a stream of words from that array.** @param <R> The element type of the new stream* @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream*/<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);/*** Returns an {@code IntStream} consisting of the results of replacing each* element of this stream with the contents of a mapped stream produced by* applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have been placed into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);/*** Returns an {@code LongStream} consisting of the results of replacing each* element of this stream with the contents of a mapped stream produced by* applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have been placed into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);/*** Returns an {@code DoubleStream} consisting of the results of replacing* each element of this stream with the contents of a mapped stream produced* by applying the provided mapping function to each element. Each mapped* stream is {@link java.util.stream.BaseStream#close() closed} after its* contents have placed been into this stream. (If a mapped stream is* {@code null} an empty stream is used, instead.)** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function to apply to each element which produces a stream* of new values* @return the new stream* @see #flatMap(Function)*/DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);/*** Returns a stream consisting of the distinct elements (according to* {@link Object#equals(Object)}) of this stream.** <p>For ordered streams, the selection of distinct elements is stable* (for duplicated elements, the element appearing first in the encounter* order is preserved.) For unordered streams, no stability guarantees* are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @apiNote* Preserving stability for {@code distinct()} in parallel pipelines is* relatively expensive (requires that the operation act as a full barrier,* with substantial buffering overhead), and stability is often not needed.* Using an unordered stream source (such as {@link #generate(Supplier)})* or removing the ordering constraint with {@link #unordered()} may result* in significantly more efficient execution for {@code distinct()} in parallel* pipelines, if the semantics of your situation permit. If consistency* with encounter order is required, and you are experiencing poor performance* or memory utilization with {@code distinct()} in parallel pipelines,* switching to sequential execution with {@link #sequential()} may improve* performance.** @return the new stream*/Stream<T> distinct();/*** Returns a stream consisting of the elements of this stream, sorted* according to natural order. If the elements of this stream are not* {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown* when the terminal operation is executed.** <p>For ordered streams, the sort is stable. For unordered streams, no* stability guarantees are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @return the new stream*/Stream<T> sorted();/*** Returns a stream consisting of the elements of this stream, sorted* according to the provided {@code Comparator}.** <p>For ordered streams, the sort is stable. For unordered streams, no* stability guarantees are made.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to be used to compare stream elements* @return the new stream*/Stream<T> sorted(Comparator<? super T> comparator);/*** Returns a stream consisting of the elements of this stream, additionally* performing the provided action on each element as elements are consumed* from the resulting stream.** <p>This is an <a href="package-summary.html#StreamOps">intermediate* operation</a>.** <p>For parallel stream pipelines, the action may be called at* whatever time and in whatever thread the element is made available by the* upstream operation. If the action modifies shared state,* it is responsible for providing the required synchronization.** @apiNote This method exists mainly to support debugging, where you want* to see the elements as they flow past a certain point in a pipeline:* <pre>{@code* Stream.of("one", "two", "three", "four")* .filter(e -> e.length() > 3)* .peek(e -> System.out.println("Filtered value: " + e))* .map(String::toUpperCase)* .peek(e -> System.out.println("Mapped value: " + e))* .collect(Collectors.toList());* }</pre>** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements as* they are consumed from the stream* @return the new stream*/Stream<T> peek(Consumer<? super T> action);/*** Returns a stream consisting of the elements of this stream, truncated* to be no longer than {@code maxSize} in length.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* stateful intermediate operation</a>.** @apiNote* While {@code limit()} is generally a cheap operation on sequential* stream pipelines, it can be quite expensive on ordered parallel pipelines,* especially for large values of {@code maxSize}, since {@code limit(n)}* is constrained to return not just any <em>n</em> elements, but the* <em>first n</em> elements in the encounter order. Using an unordered* stream source (such as {@link #generate(Supplier)}) or removing the* ordering constraint with {@link #unordered()} may result in significant* speedups of {@code limit()} in parallel pipelines, if the semantics of* your situation permit. If consistency with encounter order is required,* and you are experiencing poor performance or memory utilization with* {@code limit()} in parallel pipelines, switching to sequential execution* with {@link #sequential()} may improve performance.** @param maxSize the number of elements the stream should be limited to* @return the new stream* @throws IllegalArgumentException if {@code maxSize} is negative*/Stream<T> limit(long maxSize);/*** Returns a stream consisting of the remaining elements of this stream* after discarding the first {@code n} elements of the stream.* If this stream contains fewer than {@code n} elements then an* empty stream will be returned.** <p>This is a <a href="package-summary.html#StreamOps">stateful* intermediate operation</a>.** @apiNote* While {@code skip()} is generally a cheap operation on sequential* stream pipelines, it can be quite expensive on ordered parallel pipelines,* especially for large values of {@code n}, since {@code skip(n)}* is constrained to skip not just any <em>n</em> elements, but the* <em>first n</em> elements in the encounter order. Using an unordered* stream source (such as {@link #generate(Supplier)}) or removing the* ordering constraint with {@link #unordered()} may result in significant* speedups of {@code skip()} in parallel pipelines, if the semantics of* your situation permit. If consistency with encounter order is required,* and you are experiencing poor performance or memory utilization with* {@code skip()} in parallel pipelines, switching to sequential execution* with {@link #sequential()} may improve performance.** @param n the number of leading elements to skip* @return the new stream* @throws IllegalArgumentException if {@code n} is negative*/Stream<T> skip(long n);/*** Performs an action for each element of this stream.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>The behavior of this operation is explicitly nondeterministic.* For parallel stream pipelines, this operation does <em>not</em>* guarantee to respect the encounter order of the stream, as doing so* would sacrifice the benefit of parallelism. For any given element, the* action may be performed at whatever time and in whatever thread the* library chooses. If the action accesses shared state, it is* responsible for providing the required synchronization.** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements*/void forEach(Consumer<? super T> action);/*** Performs an action for each element of this stream, in the encounter* order of the stream if the stream has a defined encounter order.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>This operation processes the elements one at a time, in encounter* order if one exists. Performing the action for one element* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>* performing the action for subsequent elements, but for any given element,* the action may be performed in whatever thread the library chooses.** @param action a <a href="package-summary.html#NonInterference">* non-interfering</a> action to perform on the elements* @see #forEach(Consumer)*/void forEachOrdered(Consumer<? super T> action);/*** Returns an array containing the elements of this stream.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @return an array containing the elements of this stream*/Object[] toArray();/*** Returns an array containing the elements of this stream, using the* provided {@code generator} function to allocate the returned array, as* well as any additional arrays that might be required for a partitioned* execution or for resizing.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote* The generator function takes an integer, which is the size of the* desired array, and produces an array of the desired size. This can be* concisely expressed with an array constructor reference:* <pre>{@code* Person[] men = people.stream()* .filter(p -> p.getGender() == MALE)* .toArray(Person[]::new);* }</pre>** @param <A> the element type of the resulting array* @param generator a function which produces a new array of the desired* type and the provided length* @return an array containing the elements in this stream* @throws ArrayStoreException if the runtime type of the array returned* from the array generator is not a supertype of the runtime type of every* element in this stream*/<A> A[] toArray(IntFunction<A[]> generator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using the provided identity value and an* <a href="package-summary.html#Associativity">associative</a>* accumulation function, and returns the reduced value. This is equivalent* to:* <pre>{@code* T result = identity;* for (T element : this stream)* result = accumulator.apply(result, element)* return result;* }</pre>** but is not constrained to execute sequentially.** <p>The {@code identity} value must be an identity for the accumulator* function. This means that for all {@code t},* {@code accumulator.apply(identity, t)} is equal to {@code t}.* The {@code accumulator} function must be an* <a href="package-summary.html#Associativity">associative</a> function.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote Sum, min, max, average, and string concatenation are all special* cases of reduction. Summing a stream of numbers can be expressed as:** <pre>{@code* Integer sum = integers.reduce(0, (a, b) -> a+b);* }</pre>** or:** <pre>{@code* Integer sum = integers.reduce(0, Integer::sum);* }</pre>** <p>While this may seem a more roundabout way to perform an aggregation* compared to simply mutating a running total in a loop, reduction* operations parallelize more gracefully, without needing additional* synchronization and with greatly reduced risk of data races.** @param identity the identity value for the accumulating function* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values* @return the result of the reduction*/T reduce(T identity, BinaryOperator<T> accumulator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using an* <a href="package-summary.html#Associativity">associative</a> accumulation* function, and returns an {@code Optional} describing the reduced value,* if any. This is equivalent to:* <pre>{@code* boolean foundAny = false;* T result = null;* for (T element : this stream) {* if (!foundAny) {* foundAny = true;* result = element;* }* else* result = accumulator.apply(result, element);* }* return foundAny ? Optional.of(result) : Optional.empty();* }</pre>** but is not constrained to execute sequentially.** <p>The {@code accumulator} function must be an* <a href="package-summary.html#Associativity">associative</a> function.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values* @return an {@link Optional} describing the result of the reduction* @throws NullPointerException if the result of the reduction is null* @see #reduce(Object, BinaryOperator)* @see #min(Comparator)* @see #max(Comparator)*/Optional<T> reduce(BinaryOperator<T> accumulator);/*** Performs a <a href="package-summary.html#Reduction">reduction</a> on the* elements of this stream, using the provided identity, accumulation and* combining functions. This is equivalent to:* <pre>{@code* U result = identity;* for (T element : this stream)* result = accumulator.apply(result, element)* return result;* }</pre>** but is not constrained to execute sequentially.** <p>The {@code identity} value must be an identity for the combiner* function. This means that for all {@code u}, {@code combiner(identity, u)}* is equal to {@code u}. Additionally, the {@code combiner} function* must be compatible with the {@code accumulator} function; for all* {@code u} and {@code t}, the following must hold:* <pre>{@code* combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)* }</pre>** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote Many reductions using this form can be represented more simply* by an explicit combination of {@code map} and {@code reduce} operations.* The {@code accumulator} function acts as a fused mapper and accumulator,* which can sometimes be more efficient than separate mapping and reduction,* such as when knowing the previously reduced value allows you to avoid* some computation.** @param <U> The type of the result* @param identity the identity value for the combiner function* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for incorporating an additional element into a result* @param combiner an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values, which must be* compatible with the accumulator function* @return the result of the reduction* @see #reduce(BinaryOperator)* @see #reduce(Object, BinaryOperator)*/<U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner);/*** Performs a <a href="package-summary.html#MutableReduction">mutable* reduction</a> operation on the elements of this stream. A mutable* reduction is one in which the reduced value is a mutable result container,* such as an {@code ArrayList}, and elements are incorporated by updating* the state of the result rather than by replacing the result. This* produces a result equivalent to:* <pre>{@code* R result = supplier.get();* for (T element : this stream)* accumulator.accept(result, element);* return result;* }</pre>** <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations* can be parallelized without requiring additional synchronization.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @apiNote There are many existing classes in the JDK whose signatures are* well-suited for use with method references as arguments to {@code collect()}.* For example, the following will accumulate strings into an {@code ArrayList}:* <pre>{@code* List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,* ArrayList::addAll);* }</pre>** <p>The following will take a stream of strings and concatenates them into a* single string:* <pre>{@code* String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,* StringBuilder::append)* .toString();* }</pre>** @param <R> type of the result* @param supplier a function that creates a new result container. For a* parallel execution, this function may be called* multiple times and must return a fresh value each time.* @param accumulator an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for incorporating an additional element into a result* @param combiner an <a href="package-summary.html#Associativity">associative</a>,* <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* function for combining two values, which must be* compatible with the accumulator function* @return the result of the reduction*/<R> R collect(Supplier<R> supplier,BiConsumer<R, ? super T> accumulator,BiConsumer<R, R> combiner);/*** Performs a <a href="package-summary.html#MutableReduction">mutable* reduction</a> operation on the elements of this stream using a* {@code Collector}. A {@code Collector}* encapsulates the functions used as arguments to* {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of* collection strategies and composition of collect operations such as* multiple-level grouping or partitioning.** <p>If the stream is parallel, and the {@code Collector}* is {@link Collector.Characteristics#CONCURRENT concurrent}, and* either the stream is unordered or the collector is* {@link Collector.Characteristics#UNORDERED unordered},* then a concurrent reduction will be performed (see {@link Collector} for* details on concurrent reduction.)** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** <p>When executed in parallel, multiple intermediate results may be* instantiated, populated, and merged so as to maintain isolation of* mutable data structures. Therefore, even when executed in parallel* with non-thread-safe data structures (such as {@code ArrayList}), no* additional synchronization is needed for a parallel reduction.** @apiNote* The following will accumulate strings into an ArrayList:* <pre>{@code* List<String> asList = stringStream.collect(Collectors.toList());* }</pre>** <p>The following will classify {@code Person} objects by city:* <pre>{@code* Map<String, List<Person>> peopleByCity* = personStream.collect(Collectors.groupingBy(Person::getCity));* }</pre>** <p>The following will classify {@code Person} objects by state and city,* cascading two {@code Collector}s together:* <pre>{@code* Map<String, Map<String, List<Person>>> peopleByStateAndCity* = personStream.collect(Collectors.groupingBy(Person::getState,* Collectors.groupingBy(Person::getCity)));* }</pre>** @param <R> the type of the result* @param <A> the intermediate accumulation type of the {@code Collector}* @param collector the {@code Collector} describing the reduction* @return the result of the reduction* @see #collect(Supplier, BiConsumer, BiConsumer)* @see Collectors*/<R, A> R collect(Collector<? super T, A, R> collector);/*** Returns the minimum element of this stream according to the provided* {@code Comparator}. This is a special case of a* <a href="package-summary.html#Reduction">reduction</a>.** <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to compare elements of this stream* @return an {@code Optional} describing the minimum element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the minimum element is null*/Optional<T> min(Comparator<? super T> comparator);/*** Returns the maximum element of this stream according to the provided* {@code Comparator}. This is a special case of a* <a href="package-summary.html#Reduction">reduction</a>.** <p>This is a <a href="package-summary.html#StreamOps">terminal* operation</a>.** @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* {@code Comparator} to compare elements of this stream* @return an {@code Optional} describing the maximum element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the maximum element is null*/Optional<T> max(Comparator<? super T> comparator);/*** Returns the count of elements in this stream. This is a special case of* a <a href="package-summary.html#Reduction">reduction</a> and is* equivalent to:* <pre>{@code* return mapToLong(e -> 1L).sum();* }</pre>** <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.** @return the count of elements in this stream*/long count();/*** Returns whether any elements of this stream match the provided* predicate. May not evaluate the predicate on all elements if not* necessary for determining the result. If the stream is empty then* {@code false} is returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>existential quantification</em> of the* predicate over the elements of the stream (for some x P(x)).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if any elements of the stream match the provided* predicate, otherwise {@code false}*/boolean anyMatch(Predicate<? super T> predicate);/*** Returns whether all elements of this stream match the provided predicate.* May not evaluate the predicate on all elements if not necessary for* determining the result. If the stream is empty then {@code true} is* returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>universal quantification</em> of the* predicate over the elements of the stream (for all x P(x)). If the* stream is empty, the quantification is said to be <em>vacuously* satisfied</em> and is always {@code true} (regardless of P(x)).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if either all elements of the stream match the* provided predicate or the stream is empty, otherwise {@code false}*/boolean allMatch(Predicate<? super T> predicate);/*** Returns whether no elements of this stream match the provided predicate.* May not evaluate the predicate on all elements if not necessary for* determining the result. If the stream is empty then {@code true} is* returned and the predicate is not evaluated.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @apiNote* This method evaluates the <em>universal quantification</em> of the* negated predicate over the elements of the stream (for all x ~P(x)). If* the stream is empty, the quantification is said to be vacuously satisfied* and is always {@code true}, regardless of P(x).** @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,* <a href="package-summary.html#Statelessness">stateless</a>* predicate to apply to elements of this stream* @return {@code true} if either no elements of the stream match the* provided predicate or the stream is empty, otherwise {@code false}*/boolean noneMatch(Predicate<? super T> predicate);/*** Returns an {@link Optional} describing the first element of this stream,* or an empty {@code Optional} if the stream is empty. If the stream has* no encounter order, then any element may be returned.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** @return an {@code Optional} describing the first element of this stream,* or an empty {@code Optional} if the stream is empty* @throws NullPointerException if the element selected is null*/Optional<T> findFirst();/*** Returns an {@link Optional} describing some element of the stream, or an* empty {@code Optional} if the stream is empty.** <p>This is a <a href="package-summary.html#StreamOps">short-circuiting* terminal operation</a>.** <p>The behavior of this operation is explicitly nondeterministic; it is* free to select any element in the stream. This is to allow for maximal* performance in parallel operations; the cost is that multiple invocations* on the same source may not return the same result. (If a stable result* is desired, use {@link #findFirst()} instead.)** @return an {@code Optional} describing some element of this stream, or an* empty {@code Optional} if the stream is empty* @throws NullPointerException if the element selected is null* @see #findFirst()*/Optional<T> findAny();// Static factories/*** Returns a builder for a {@code Stream}.** @param <T> type of elements* @return a stream builder*/public static<T> Builder<T> builder() {return new Streams.StreamBuilderImpl<>();}/*** Returns an empty sequential {@code Stream}.** @param <T> the type of stream elements* @return an empty sequential stream*/public static<T> Stream<T> empty() {return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);}/*** Returns a sequential {@code Stream} containing a single element.** @param t the single element* @param <T> the type of stream elements* @return a singleton sequential stream*/public static<T> Stream<T> of(T t) {return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);}/*** Returns a sequential ordered stream whose elements are the specified values.** @param <T> the type of stream elements* @param values the elements of the new stream* @return the new stream*/@SafeVarargs@SuppressWarnings("varargs") // Creating a stream from an array is safepublic static<T> Stream<T> of(T... values) {return Arrays.stream(values);}/*** Returns an infinite sequential ordered {@code Stream} produced by iterative* application of a function {@code f} to an initial element {@code seed},* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},* {@code f(f(seed))}, etc.** <p>The first element (position {@code 0}) in the {@code Stream} will be* the provided {@code seed}. For {@code n > 0}, the element at position* {@code n}, will be the result of applying the function {@code f} to the* element at position {@code n - 1}.** @param <T> the type of stream elements* @param seed the initial element* @param f a function to be applied to to the previous element to produce* a new element* @return a new sequential {@code Stream}*/public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {Objects.requireNonNull(f);final Iterator<T> iterator = new Iterator<T>() {@SuppressWarnings("unchecked")T t = (T) Streams.NONE;@Overridepublic boolean hasNext() {return true;}@Overridepublic T next() {return t = (t == Streams.NONE) ? seed : f.apply(t);}};return StreamSupport.stream(Spliterators.spliteratorUnknownSize(iterator,Spliterator.ORDERED | Spliterator.IMMUTABLE), false);}/*** Returns an infinite sequential unordered stream where each element is* generated by the provided {@code Supplier}. This is suitable for* generating constant streams, streams of random elements, etc.** @param <T> the type of stream elements* @param s the {@code Supplier} of generated elements* @return a new infinite sequential unordered {@code Stream}*/public static<T> Stream<T> generate(Supplier<T> s) {Objects.requireNonNull(s);return StreamSupport.stream(new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);}/*** Creates a lazily concatenated stream whose elements are all the* elements of the first stream followed by all the elements of the* second stream. The resulting stream is ordered if both* of the input streams are ordered, and parallel if either of the input* streams is parallel. When the resulting stream is closed, the close* handlers for both input streams are invoked.** @implNote* Use caution when constructing streams from repeated concatenation.* Accessing an element of a deeply concatenated stream can result in deep* call chains, or even {@code StackOverflowException}.** @param <T> The type of stream elements* @param a the first stream* @param b the second stream* @return the concatenation of the two input streams*/public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {Objects.requireNonNull(a);Objects.requireNonNull(b);@SuppressWarnings("unchecked")Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>((Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());return stream.onClose(Streams.composedClose(a, b));}/*** A mutable builder for a {@code Stream}. This allows the creation of a* {@code Stream} by generating elements individually and adding them to the* {@code Builder} (without the copying overhead that comes from using* an {@code ArrayList} as a temporary buffer.)** <p>A stream builder has a lifecycle, which starts in a building* phase, during which elements can be added, and then transitions to a built* phase, after which elements may not be added. The built phase begins* when the {@link #build()} method is called, which creates an ordered* {@code Stream} whose elements are the elements that were added to the stream* builder, in the order they were added.** @param <T> the type of stream elements* @see Stream#builder()* @since 1.8*/public interface Builder<T> extends Consumer<T> {/*** Adds an element to the stream being built.** @throws IllegalStateException if the builder has already transitioned to* the built state*/@Overridevoid accept(T t);/*** Adds an element to the stream being built.** @implSpec* The default implementation behaves as if:* <pre>{@code* accept(t)* return this;* }</pre>** @param t the element to add* @return {@code this} builder* @throws IllegalStateException if the builder has already transitioned to* the built state*/default Builder<T> add(T t) {accept(t);return this;}/*** Builds the stream, transitioning this builder to the built state.* An {@code IllegalStateException} is thrown if there are further attempts* to operate on the builder after it has entered the built state.** @return the built stream* @throws IllegalStateException if the builder has already transitioned to* the built state*/Stream<T> build();}}
只是,这接口中定义的参数,都是些经过特殊定义的接口,即函数式接口,即默认只需实现一个方法即可接口类定义。
3. stream包的具体实现?
如上一节,我们已知stream中主要依赖于许多的接口定义。既然是接口,那就必然无法直接调用,须要有与之对应的实现方可调用。所以,我们需要有特定的场景,才可以来谈stream 的实现问题。
所以,我们先以相对简单的 Integer 的流转化与处理过程,一探stream究竟。
// java.util.Arrays#stream(T[])/*** Returns a sequential {@link Stream} with the specified array as its* source.** @param <T> The type of the array elements* @param array The array, assumed to be unmodified during use* @return a {@code Stream} for the array* @since 1.8*/public static <T> Stream<T> stream(T[] array) {return stream(array, 0, array.length);}// java.util.Arrays#stream(T[], int, int)/*** Returns a sequential {@link Stream} with the specified range of the* specified array as its source.** @param <T> the type of the array elements* @param array the array, assumed to be unmodified during use* @param startInclusive the first index to cover, inclusive* @param endExclusive index immediately past the last index to cover* @return a {@code Stream} for the array range* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is* negative, {@code endExclusive} is less than* {@code startInclusive}, or {@code endExclusive} is greater than* the array size* @since 1.8*/public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) {// 构造 iterator, 带入 StreamSupport 中return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);}/*** Returns a {@link Spliterator} covering the specified range of the* specified array.** <p>The spliterator reports {@link Spliterator#SIZED},* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and* {@link Spliterator#IMMUTABLE}.** @param <T> type of elements* @param array the array, assumed to be unmodified during use* @param startInclusive the first index to cover, inclusive* @param endExclusive index immediately past the last index to cover* @return a spliterator for the array elements* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is* negative, {@code endExclusive} is less than* {@code startInclusive}, or {@code endExclusive} is greater than* the array size* @since 1.8*/public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) {return Spliterators.spliterator(array, startInclusive, endExclusive,Spliterator.ORDERED | Spliterator.IMMUTABLE);}// java.util.stream.StreamSupport#stream(java.util.Spliterator<T>, boolean)/*** Creates a new sequential or parallel {@code Stream} from a* {@code Spliterator}.** <p>The spliterator is only traversed, split, or queried for estimated* size after the terminal operation of the stream pipeline commences.** <p>It is strongly recommended the spliterator report a characteristic of* {@code IMMUTABLE} or {@code CONCURRENT}, or be* <a href="../Spliterator.html#binding">late-binding</a>. Otherwise,* {@link #stream(java.util.function.Supplier, int, boolean)} should be used* to reduce the scope of potential interference with the source. See* <a href="package-summary.html#NonInterference">Non-Interference</a> for* more details.** @param <T> the type of stream elements* @param spliterator a {@code Spliterator} describing the stream elements* @param parallel if {@code true} then the returned stream is a parallel* stream; if {@code false} the returned stream is a sequential* stream.* @return a new sequential or parallel {@code Stream}*/public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {Objects.requireNonNull(spliterator);return new ReferencePipeline.Head<>(spliterator,StreamOpFlag.fromCharacteristics(spliterator),parallel);}// java.util.stream.ReferencePipeline.Head#Head(java.util.Spliterator<?>, int, boolean)/*** Constructor for the source stage of a Stream.** @param source {@code Spliterator} describing the stream source* @param sourceFlags the source flags for the stream source, described* in {@link StreamOpFlag}*/Head(Spliterator<?> source,int sourceFlags, boolean parallel) {super(source, sourceFlags, parallel);}// java.util.stream.ReferencePipeline#ReferencePipeline(java.util.Spliterator<?>, int, boolean)/*** Constructor for the head of a stream pipeline.** @param source {@code Spliterator} describing the stream source* @param sourceFlags The source flags for the stream source, described in* {@link StreamOpFlag}* @param parallel {@code true} if the pipeline is parallel*/ReferencePipeline(Spliterator<?> source,int sourceFlags, boolean parallel) {super(source, sourceFlags, parallel);}// java.util.stream.AbstractPipeline#AbstractPipeline(java.util.Spliterator<?>, int, boolean)/*** Constructor for the head of a stream pipeline.** @param source {@code Spliterator} describing the stream source* @param sourceFlags the source flags for the stream source, described in* {@link StreamOpFlag}* @param parallel {@code true} if the pipeline is parallel*/AbstractPipeline(Spliterator<?> source,int sourceFlags, boolean parallel) {this.previousStage = null;this.sourceSpliterator = source;this.sourceStage = this;this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;// The following is an optimization of:// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;this.depth = 0;this.parallel = parallel;}如上,就返回了一 Stream 的具体实例,即是 ReferencePipeline.Head 的实例。故而,之后的每个stream操作如 filter,map,foreach方法,都尽在该 head 中进行实现了。一瞅便知。// java.util.stream.ReferencePipeline#filter@Overridepublic final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {Objects.requireNonNull(predicate);// 只返回了一个 StreamlessOp实例return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SIZED) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {@Overridepublic void begin(long size) {downstream.begin(-1);}@Overridepublic void accept(P_OUT u) {// 在必要时候调用 test() 方法即可// 当test返回 true 时,该元素被保留传入下一级调用中,此即filter的语义if (predicate.test(u))downstream.accept(u);}};}};}// java.util.stream.ReferencePipeline#map@Override@SuppressWarnings("unchecked")public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {Objects.requireNonNull(mapper);// 同样,仅返回一个 StatelessOp 的实例return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<R> sink) {return new Sink.ChainedReference<P_OUT, R>(sink) {@Overridepublic void accept(P_OUT u) {// 同样,在必要的时候调用 apply 方法// 即 map 的语义为 每个元素都会调用该方法downstream.accept(mapper.apply(u));}};}};}@Overridepublic final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {Objects.requireNonNull(mapper);// We can do better than this, by polling cancellationRequested when stream is infinitereturn new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {@OverrideSink<P_OUT> opWrapSink(int flags, Sink<R> sink) {return new Sink.ChainedReference<P_OUT, R>(sink) {@Overridepublic void begin(long size) {downstream.begin(-1);}@Overridepublic void accept(P_OUT u) {// flatmap 语义,所得结果,依次往下传输try (Stream<? extends R> result = mapper.apply(u)) {// We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach itif (result != null)result.sequential().forEach(downstream);}}};}};}
如上,几个方法调用下来,我们基本都可以看到,都是一个个的 StatelessOp 的实例的返回,但都没有触发真正的计算。那么,真正计算又要到几时呢?相信有些其他知识面的你,定然会想到,在合适的时候再来触发真正的运算操作。当数据结构不会发生本质的变化时,这种平衡就是存在的。只是在一些关键时候,才会触发运算。这为后续进行并行计算或者性能优化提供了可能。
那么,stream包中,哪些运算是作为真正的触发行为呢?至少 collect(), foreach(), reduce() 是会进行触发的。这些优化手段,不知和其他框架实现,谁先谁后,谁主谁从。反正,总是好的想法。在其他地方,也许叫许多算子。
我们以collect()探查如何使用这stream的威力?
// java.util.stream.ReferencePipeline#collect(java.util.stream.Collector<? super P_OUT,A,R>)@Override@SuppressWarnings("unchecked")public final <R, A> R collect(Collector<? super P_OUT, A, R> collector) {A container;// 即分并行与串行if (isParallel()&& (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))&& (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {container = collector.supplier().get();BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator();forEach(u -> accumulator.accept(container, u));}else {// 串行执行container = evaluate(ReduceOps.makeRef(collector));}return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)? (R) container: collector.finisher().apply(container);}/*** Constructs a {@code TerminalOp} that implements a mutable reduce on* reference values.** @param <T> the type of the input elements* @param <I> the type of the intermediate reduction result* @param collector a {@code Collector} defining the reduction* @return a {@code ReduceOp} implementing the reduction*/public static <T, I> TerminalOp<T, I>makeRef(Collector<? super T, I, ?> collector) {Supplier<I> supplier = Objects.requireNonNull(collector).supplier();BiConsumer<I, ? super T> accumulator = collector.accumulator();BinaryOperator<I> combiner = collector.combiner();class ReducingSink extends Box<I>implements AccumulatingSink<T, I, ReducingSink> {@Overridepublic void begin(long size) {state = supplier.get();}@Overridepublic void accept(T t) {accumulator.accept(state, t);}@Overridepublic void combine(ReducingSink other) {state = combiner.apply(state, other.state);}}// 返回ReuceOpreturn new ReduceOp<T, I, ReducingSink>(StreamShape.REFERENCE) {@Overridepublic ReducingSink makeSink() {return new ReducingSink();}@Overridepublic int getOpFlags() {return collector.characteristics().contains(Collector.Characteristics.UNORDERED)? StreamOpFlag.NOT_ORDERED: 0;}};}// 运算一系列任务/*** Evaluate the pipeline with a terminal operation to produce a result.** @param <R> the type of result* @param terminalOp the terminal operation to be applied to the pipeline.* @return the result*/final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {assert getOutputShape() == terminalOp.inputShape();if (linkedOrConsumed)throw new IllegalStateException(MSG_STREAM_LINKED);linkedOrConsumed = true;return isParallel()? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())): terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));}// java.util.stream.ReduceOps.ReduceOp#evaluateSequential@Overridepublic <P_IN> R evaluateSequential(PipelineHelper<T> helper,Spliterator<P_IN> spliterator) {return helper.wrapAndCopyInto(makeSink(), spliterator).get();}// java.util.stream.AbstractPipeline#wrapAndCopyInto@Overridefinal <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);return sink;}// java.util.stream.AbstractPipeline#wrapSink@Override@SuppressWarnings("unchecked")final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {Objects.requireNonNull(sink);// 基本是按照倒序来排的for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {// 一层层包装算子sink = p.opWrapSink(p.previousStage.combinedFlags, sink);}return (Sink<P_IN>) sink;}// java.util.stream.AbstractPipeline#copyInto@Overridefinal <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {Objects.requireNonNull(wrappedSink);// 依次调用 begin, foreach, end 方法if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {wrappedSink.begin(spliterator.getExactSizeIfKnown());// 每个元素依次迭代, 一层层退出来spliterator.forEachRemaining(wrappedSink);wrappedSink.end();}else {copyIntoWithCancel(wrappedSink, spliterator);}}// java.util.Spliterators.ArraySpliterator#forEachRemaining@SuppressWarnings("unchecked")@Overridepublic void forEachRemaining(Consumer<? super T> action) {Object[] a; int i, hi; // hoist accesses and checks from loopif (action == null)throw new NullPointerException();if ((a = array).length >= (hi = fence) &&(i = index) >= 0 && i < (index = hi)) {do { action.accept((T)a[i]); } while (++i < hi);}}
可见,该stream包的实现中,大量使用了包装器模式,责任链模式,模板方法模式,以及在必要的节点再进行统一的运算触发。且在必要的时候开启并行计算,为上层应用带了各种可能。在使用起来极其简单的同时,又兼顾了性能。(我说的不是通常的性能,比如我自己写几个简单的filter岂不性能更好?)而以上,仅仅是 stream 中的一种实现,针对每个不同类型的数据,其处理方式自然不一样。比如 IntStream, DoubleStream, LongStream 虽同为Stream,但特性都都不一样,不能一概而论。当然,一般这些实现都会遵守一定的接口规范。
其中,以上这些简便的写法,得益于lamda语法的支持,以及几个简单的函数式接口定义。比如 Consumer, Function... 它们都被定义在java.util.function包下面。
@FunctionalInterfacepublic interface Consumer<T> {/*** Performs this operation on the given argument.** @param t the input argument*/void accept(T t);/*** Returns a composed {@code Consumer} that performs, in sequence, this* operation followed by the {@code after} operation. If performing either* operation throws an exception, it is relayed to the caller of the* composed operation. If performing this operation throws an exception,* the {@code after} operation will not be performed.** @param after the operation to perform after this operation* @return a composed {@code Consumer} that performs in sequence this* operation followed by the {@code after} operation* @throws NullPointerException if {@code after} is null*/default Consumer<T> andThen(Consumer<? super T> after) {Objects.requireNonNull(after);return (T t) -> { accept(t); after.accept(t); };}}@FunctionalInterfacepublic interface Function<T, R> {/*** Applies this function to the given argument.** @param t the function argument* @return the function result*/R apply(T t);/*** Returns a composed function that first applies the {@code before}* function to its input, and then applies this function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of input to the {@code before} function, and to the* composed function* @param before the function to apply before this function is applied* @return a composed function that first applies the {@code before}* function and then applies this function* @throws NullPointerException if before is null** @see #andThen(Function)*/default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {Objects.requireNonNull(before);return (V v) -> apply(before.apply(v));}/*** Returns a composed function that first applies this function to* its input, and then applies the {@code after} function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of output of the {@code after} function, and of the* composed function* @param after the function to apply after this function is applied* @return a composed function that first applies this function and then* applies the {@code after} function* @throws NullPointerException if after is null** @see #compose(Function)*/default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {Objects.requireNonNull(after);return (T t) -> after.apply(apply(t));}/*** Returns a function that always returns its input argument.** @param <T> the type of the input and output objects to the function* @return a function that always returns its input argument*/static <T> Function<T, T> identity() {return t -> t;}}@FunctionalInterfacepublic interface Supplier<T> {/*** Gets a result.** @return a result*/T get();}
话说为何单叫lamda式写法又叫作函数式编程?想来原因有二,一是调用手法像是函数一般,只须传入参数即可调用,二来lamda实现方式为生出静态函数调用而成。不知是也不是。

腾讯、阿里、滴滴后台面试题汇总总结 — (含答案)
面试:史上最全多线程面试题 !
最新阿里内推Java后端面试题
JVM难学?那是因为你没认真看完这篇文章

关注作者微信公众号 —《JAVA烂猪皮》
了解更多java后端架构知识以及最新面试宝典


看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
作者:等你归去来
出处:https://www.cnblogs.com/yougewe/p/14879246.html
