Hugging Face发布PyTorch新库「Accelerate」:适用于多GPU、TPU、混合精度训练
多数 PyTorch 高级库都支持分布式训练和混合精度训练,但是它们引入的抽象化往往需要用户学习新的 API 来定制训练循环。许多 PyTorch 用户希望完全控制自己的训练循环,但不想编写和维护训练所需的样板代码。Hugging Face 最近发布的新库 Accelerate 解决了这个问题。

import torchimport torch.nn.functional as Ffrom datasets import load_dataset+ from accelerate import Accelerator+ accelerator = Accelerator()- device = 'cpu'+ device = accelerator.devicemodel = torch.nn.Transformer().to(device)optim = torch.optim.Adam(model.parameters())dataset = load_dataset('my_dataset')data = torch.utils.data.DataLoader(dataset, shuffle=True)+ model, optim, data = accelerator.prepare(model, optim, data)model.train()for epoch in range(10):for source, targets in data:source = source.to(device)targets = targets.to(device)optimizer.zero_grad()output = model(source)loss = F.cross_entropy(output, targets)+ accelerator.backward(loss)- loss.backward()optimizer.step()
import torchimport torch.nn.functional as Ffrom datasets import load_dataset+ from accelerate import Accelerator+ accelerator = Accelerator()- device = 'cpu'+ model = torch.nn.Transformer()- model = torch.nn.Transformer().to(device)optim = torch.optim.Adam(model.parameters())dataset = load_dataset('my_dataset')data = torch.utils.data.DataLoader(dataset, shuffle=True)+ model, optim, data = accelerator.prepare(model, optim, data)model.train()for epoch in range(10):for source, targets in data:- source = source.to(device)- targets = targets.to(device)optimizer.zero_grad()output = model(source)loss = F.cross_entropy(output, targets)+ accelerator.backward(loss)- loss.backward()optimizer.step()
accelerate configaccelerate launch my_script.py --args_to_my_scriptaccelerator = Accelerator()model, optim, data = accelerator.prepare(model, optim, data)accelerator.backward(loss)CPU
单 GPU
单一节点多 GPU
多节点多 GPU
TPU
带有本地 AMP 的 FP16(路线图上的顶点)
End 
声明:部分内容来源于网络,仅供读者学术交流之目的,文章版权归原作者所有。如有不妥,请联系删除。
猜您喜欢:

附下载 |《TensorFlow 2.0 深度学习算法实战》
附下载 | 超100篇!CVPR 2020最全GAN论文梳理汇总!
评论
