leetcode - 可以形成最大正方形的矩形数目
题意
给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li、宽度为 wi。
如果存在 k同时满足 k <= li 和 k <= wi,就可以将第 i个矩形切成边长为 k的正方形。例如,矩形 [4,6]可以切成边长最大为 4的正方形。
设 maxLen 为可以从矩形数组  rectangles 切分得到的 最大正方形 的边长。
返回可以切出边长为 maxLen 的正方形的矩形 数目 。
示例
示例 1:
输入:rectangles = [[5,8],[3,9],[5,12],[16,5]]
输出:3
解释:能从每个矩形中切出的最大正方形边长分别是 [5,3,5,5] 。
最大正方形的边长为 5 ,可以由 3 个矩形切分得到。
示例 2:
输入:rectangles = [[2,3],[3,7],[4,3],[3,7]]
输出:3
提示
- 1 <= rectangles.length <= 1000
- rectangles[i].length == 2
- 1 <= li, wi <= 109
- li != wi
出处
链接:https://leetcode-cn.com/problems/number-of-rectangles-that-can-form-the-largest-square
思路
这题翻译一下就是,计算二维数组中每一项的最小的值,然后求出现最小值中的最大值的次数。我们可以用一个对象去记录最小值出现的次数,然后求其最大值的次数。
代码
/**
 * @param {number[][]} rectangles
 * @return {number}
 */
const countGoodRectangles = function (rectangles) {
  const obj = {};
  rectangles.forEach((item) => {
    const res = item[0] > item[1] ? item[1] : item[0];
    if (obj[res]) {
      obj[res]++;
    } else {
      obj[res] = 1;
    }
    return res;
  });
  const max = Math.max.apply(this, Object.keys(obj));
  return obj[max];
};
export default countGoodRectangles;
测试
import countGoodRectangles from '../../code/leetcode/5653';
describe('test function countGoodRectangles: ', () => {
  test('test case rectangles = [[5,8],[3,9],[5,12],[16,5]]', () => {
    const res = countGoodRectangles([
      [5, 8],
      [3, 9],
      [5, 12],
      [16, 5],
    ]);
    expect(res).toBe(3);
  });
  test('test case rectangles = [[2,3],[3,7],[4,3],[3,7]]', () => {
    const res = countGoodRectangles([
      [2, 3],
      [3, 7],
      [4, 3],
      [3, 7],
    ]);
    expect(res).toBe(3);
  });
});
说明
本文首发于 GitHub 仓库https://github.com/ataola/coding,线上阅读地址:https://zhengjiangtao.cn/coding/,转载请注明出处,谢谢!
评论
