Catboost算法原理解析及代码实现

共 2998字,需浏览 6分钟

 ·

2021-12-25 21:26

前言

今天博主来介绍一个超级简单并且又极其实用的boosting算法包Catboost,据开发者所说这一boosting算法是超越Lightgbm和XGBoost的又一个神器。

catboost 简介

在博主看来catboost有一下三个的优点:

  • 它自动采用特殊的方式处理类别型特征(categorical features)。首先对categorical features做一些统计,计算某个类别特征(category)出现的频率,之后加上超参数,生成新的数值型特征(numerical features)。这也是我在这里介绍这个算法最大的motivtion,有了catboost,再也不用手动处理类别型特征了。

  • catboost还使用了组合类别特征,可以利用到特征之间的联系,这极大的丰富了特征维度

  • catboost的基模型采用的是对称树,同时计算leaf-value方式和传统的boosting算法也不一样,传统的boosting算法计算的是平均数,而catboost在这方面做了优化采用了其他的算法,这些改进都能防止模型过拟合

 

catboost 实战

这里博主采用的是之前参加一个CTR点击率预估的数据集,首先通过pandas读入数据。

 


     
  1. from catboost import CatBoostClassifier

  2. import pandas as pd

  3. from sklearn.model_selection import train_test_split

  4. import numpy as np

  5. data = pd.read_csv("ctr_train.txt", delimiter="\t")

  6. del data["user_tags"]

  7. data = data.fillna(0)

  8. X_train, X_validation, y_train, y_validation = train_test_split(data.iloc[:,:-1],data.iloc[:,-1],test_size=0.3 , random_state=1234)

这里我们可以观察一下数据的特征列,这里有很多列特征比如广告的宽高是否可以下载是否会跳转等一些特征,而且特征的数据类型各不一样,有数值型(creative_height),布尔型(creative_is_js)等不同类型的特征。

data


下图我们对所有特征做了一个统计,发现整个训练数据集一共有34列,除去标签列,整个数据集一共有33个特征,其中6个为布尔型特征,2个为浮点型特征,18个整型特征,还有8个对象型特征。

data_information


如果按照正常的算法,此时应该将非数值型特征通过各种数据预处理手段,各种编码方式转化为数值型特征。而在catboost中你根本不用费心干这些,你只需要告诉算法,哪些特征属于类别特征,它会自动帮你处理。代码如下所示:

 

 


     
  1. categorical_features_indices = np.where(X_train.dtypes != np.float)[0]

  2. model = CatBoostClassifier(iterations=100, depth=5,cat_features=categorical_features_indices,learning_rate=0.5, loss_function='Logloss',

  3. logging_level='Verbose')

最后就是将数据喂给算法,训练走起来。

 

model.fit(X_train,y_train,eval_set=(X_validation, y_validation),plot=True)

将plot = ture 打开后,catboot包还提供了非常炫酷的训练可视化功能,从下图可以看到我的Logloss正在不停的下降。

 

training

 

训练结束后,通过model.feature_importances_属性,我们可以拿到这些特征的重要程度数据,特征的重要性程度可以帮助我们分析出一些有用的信息。

 


     
  1. import matplotlib.pyplot as plt

  2. fea_ = model.feature_importances_

  3. fea_name = model.feature_names_

  4. plt.figure(figsize=(10, 10))

  5. plt.barh(fea_name,fea_,height =0.5)

执行上方代码,我们可以拿到特征重要程度的可视化结构,从下图我们发现campaign_id是用户是否点击这个广告的最关键的影响因子。

 

feature_importance

结语

至此整个catboot的优点和使用方法都介绍完了,是不是觉得十分简单易用,而且功能强大。深度学习,神经网络减弱了我们对特征工程的依赖,catboost也在朝着这方面努力。所以有时候碰到需要特别多的前期数据处理和特征数值化的任务时,可以尝试用一下catboost,python pip install catboost 即可安装哦。




Python“宝藏级”公众号【Python之王】专注于Python领域,会爬虫,数分,C++,tensorflow和Pytorch等等

近 2年共原创 100+ 篇技术文章。创作的精品文章系列有:

日常收集整理了一批不错的 Python 学习资料,有需要的小伙可以自行免费领取。

获取方式如下:公众号回复资料领取Python等系列笔记,项目,书籍,直接套上模板就可以用了。资料包含算法、python、算法小抄、力扣刷题手册和 C++ 等学习资料!

浏览 275
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报