干货 | Branch and Price算法求解VRPTW问题(附JAVA代码分享)

程序猿声

共 24591字,需浏览 50分钟

 ·

2019-12-12 23:20

写在前面


前两天小编刚忙完手头上的事情,闲了下来,然后顺便研究了一下Branch and Price的算法。刚好,国内目前缺少这种类型算法的介绍和代码实现,今天就给大家分享一下咯。


代码出自国外一个大神@author mschyns之手。代码没有写调用模块,这一部分是小编后续补上去的,以便大家能运行(真是太贴心啦呜呜呜~还不赶紧转发点赞!)。然后检查了代码,修正了一些bug。
65fc35edaca205e3211535cb04188ef4.webp


代码获取方式在公众号后台回复【BPVRPTW】不包括【】即可。
最后,大家可以关注一下小编的公众号,上面不仅有关于算法的分享,还有python等好玩的东西:

算法介绍


该Branch and Price算法由以下几部分组成:

1. Branch and Bound:分支定界,下界使用Column Generation求解。

2. Column Generation:列生成算法,求解VRPWTW松弛模型的最优解。

3. ESPPRC-Label Setting:求解VRPTW的子问题(pricing problem),标号法求解。


算法的运行效果如下:

73a1787b739bfbbbf6292e8ad8471d51.webp


算例用的是标准Solomon25。大部分,一轮Column Generation就能直接得到整数解,可能是巧合。也有部分算例需要branch。


更改输入算例在Main.java:


dd99cd96f0259eb42140943ade6bdfa1.webp


更改算例后同时也要更改客户数,在paramsVRP.java:

a6e6db7683a567b8057f1649d5d9f77a.webp



可参考的推文如下


CPLEX:

1. 干货 | cplex介绍、下载和安装以及java环境配置和API简单说明

2. 干货 | JAVA调用cplex求解一个TSP模型详解

3. 干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程)


Branch and Bound

1. 干货 | 10分钟带你全面掌握branch and bound(分支定界)算法-概念篇

2. 干货 | 10分钟搞懂branch and bound算法的代码实现附带java代码

3. 干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题

4. cplex教学 | 分支定界法(branch and bound)解带时间窗的车辆路径规划问题(附代码及详细注释)


Column Generation

1. 干货 | 10分钟带你彻底了解Column Generation(列生成)算法的原理附java代码

2. 运筹学教学|列生成(Column Generation)算法(附代码及详细注释)

3. 干货 | 10分钟教你使用Column Generation求解VRPTW的线性松弛模型

4. 干货 | 求解VRPTW松弛模型的Column Generation算法的JAVA代码分享


ESPPRC1. 干货 | VRPTW子问题ESPPRC的介绍及其求解算法的C++代码
2. 标号法(label-setting algorithm)求解带时间窗的最短路问题



可参考的文献如下


BOOK: Desrosiers, Desaulniers, Solomon, "Column Generation", Springer, 2005 (GERAD, 25th anniversary)     


Column generation  : chapter 3, Vehicle Routing Problem with Time Windows Brian Kallehauge, Jesper Larsen, Oli B. G, Madsen, and Marius M. Solomon
Pricing SPPRC : chapter 2, Shortest Path Problems with Resource Constraints 33 Stefan Irnich and Guy Desaulniers


文献下载请在后台回复【BPREF】不包括【】即可下载。

代码解析如下


Branch and Bound的过程如下(具体参考此前讲过的算法原理)
  public boolean BBnode(paramsVRP userParam, ArrayList routes,      treeBB branching, ArrayList bestRoutes, int depth)      throws IOException {    // userParam (input) : all the parameters provided by the users (cities,    // roads...)    // routes (input) : all (but we could decide to keep only a subset) the    // routes considered up to now (to initialize the Column generation process)    // branching (input): BB branching context information for the current node    // to process (branching edge var, branching value, branching from...)    // bestRoutes (output): best solution encountered    int i, j, bestEdge1, bestEdge2, prevcity, city, bestVal;    double coef, bestObj, change, CGobj;    boolean feasible;
try {
// check first that we need to solve this node. Not the case if we have // already found a solution within the gap precision if ((upperbound - lowerbound) / upperbound < userParam.gap) return true;
// init if (branching == null) { // root node - first call // first call - root node treeBB newnode = new treeBB(); newnode.father = null; newnode.toplevel = true; newnode.branchFrom = -1; newnode.branchTo = -1; newnode.branchValue = -1; newnode.son0 = null; branching = newnode; }
// display some local info if (branching.branchValue < 1) System.out.println("\nEdge from " + branching.branchFrom + " to " + branching.branchTo + ": forbid"); else System.out.println("\nEdge from " + branching.branchFrom + " to " + branching.branchTo + ": set"); int mb = 1024 * 1024; Runtime runtime = Runtime.getRuntime(); System.out.print("Java Memory=> Total:" + (runtime.totalMemory() / mb) + " Max:" + (runtime.maxMemory() / mb) + " Used:" + ((runtime.totalMemory() - runtime.freeMemory()) / mb) + " Free: " + runtime.freeMemory() / mb);
// Compute a solution for this node using Column generation columngen CG = new columngen();
CGobj = CG.computeColGen(userParam, routes); // feasible ? Does a solution exist? if ((CGobj > 2 * userParam.maxlength) || (CGobj < -1e-6)) { // can only be true when the routes in the solution include forbidden edges (can happen when the BB set branching values) System.out.println("RELAX INFEASIBLE | Lower bound: " + lowerbound + " | Upper bound: " + upperbound + " | Gap: " + ((upperbound - lowerbound) / upperbound) + " | BB Depth: " + depth + " | " + routes.size() + " routes"); return true; // stop this branch } branching.lowestValue = CGobj;
// update the global lowerbound when required if ((branching.father != null) && (branching.father.son0 != null) && branching.father.toplevel) { // all nodes above and on the left have been processed=> we can compute // a new lowerbound lowerbound = (branching.lowestValue > branching.father.son0.lowestValue) ? branching.father.son0.lowestValue : branching.lowestValue; branching.toplevel = true; } else if (branching.father == null) // root node lowerbound = CGobj;
if (branching.lowestValue > upperbound) { CG = null; System.out.println("CUT | Lower bound: " + lowerbound + " | Upper bound: " + upperbound + " | Gap: " + ((upperbound - lowerbound) / upperbound) + " | BB Depth: " + depth + " | Local CG cost: " + CGobj + " | " + routes.size() + " routes"); return true; // cut this useless branch } else { // /////////////////////////////////////////////////////////////////////////// // check the (integer) feasibility. Otherwise search for a branching // variable feasible = true; bestEdge1 = -1; bestEdge2 = -1; bestObj = -1.0; bestVal = 0;
// transform the path variable (of the CG model) into edges variables for (i = 0; i < userParam.nbclients + 2; i++) java.util.Arrays.fill(userParam.edges[i], 0.0); for (route r : routes) { if (r.getQ() > 1e-6) { // we consider only the routes in the current // local solution ArrayList path = r.getpath(); // get back the sequence of // cities (path for this // route) prevcity = 0; for (i = 1; i < path.size(); i++) { city = path.get(i); userParam.edges[prevcity][city] += r.getQ(); // convert into edges prevcity = city; } } }
// find a fractional edge for (i = 0; i < userParam.nbclients + 2; i++) { for (j = 0; j < userParam.nbclients + 2; j++) { coef = userParam.edges[i][j]; if ((coef > 1e-6) && ((coef < 0.9999999999) || (coef > 1.0000000001))) { // this route has a fractional coefficient in the solution => // should we branch on this one? feasible = false; // what if we impose this route in the solution? Q=1 // keep the ref of the edge which should lead to the largest // change change = (coef < Math.abs(1.0 - coef)) ? coef : Math.abs(1.0 - coef); change *= routes.get(i).getcost(); if (change > bestObj) { bestEdge1 = i; bestEdge2 = j; bestObj = change; bestVal = (Math.abs(1.0 - coef) > coef) ? 0 : 1; } } } } CG = null;
if (feasible) { if (branching.lowestValue < upperbound) { // new incumbant feasible solution! upperbound = branching.lowestValue; bestRoutes.clear(); for (route r : routes) { if (r.getQ() > 1e-6) { route optim = new route(); optim.setcost(r.getcost()); optim.path = r.getpath(); optim.setQ(r.getQ()); bestRoutes.add(optim); } } System.out.println("OPT | Lower bound: " + lowerbound + " | Upper bound: " + upperbound + " | Gap: " + ((upperbound - lowerbound) / upperbound) + " | BB Depth: " + depth + " | Local CG cost: " + CGobj + " | " + routes.size() + " routes"); System.out.flush(); } else System.out.println("FEAS | Lower bound: " + lowerbound + " | Upper bound: " + upperbound + " | Gap: " + ((upperbound - lowerbound) / upperbound) + " | BB Depth: " + depth + " | Local CG cost: " + CGobj + " | " + routes.size() + " routes"); return feasible; } else { System.out.println("INTEG INFEAS | Lower bound: " + lowerbound + " | Upper bound: " + upperbound + " | Gap: " + ((upperbound - lowerbound) / upperbound) + " | BB Depth: " + depth + " | Local CG cost: " + CGobj + " | " + routes.size() + " routes"); System.out.flush(); // /////////////////////////////////////////////////////////// // branching (diving strategy)
// first branch -> set edges[bestEdge1][bestEdge2]=0 // record the branching information in a tree list treeBB newnode1 = new treeBB(); newnode1.father = branching; newnode1.branchFrom = bestEdge1; newnode1.branchTo = bestEdge2; newnode1.branchValue = bestVal; // first version was not with bestVal // but with 0 newnode1.lowestValue = -1E10; newnode1.son0 = null;
// branching on edges[bestEdge1][bestEdge2]=0 EdgesBasedOnBranching(userParam, newnode1, false);
// the initial lp for the CG contains all the routes of the previous // solution less the routes containing this arc ArrayList nodeRoutes = new ArrayList(); for (route r : routes) { ArrayList path = r.getpath(); boolean accept = true; if (path.size() > 3) { // we must keep trivial routes // Depot-City-Depot in the set to ensure // feasibility of the CG prevcity = 0; for (j = 1; accept && (j < path.size()); j++) { city = path.get(j); if ((prevcity == bestEdge1) && (city == bestEdge2)) accept = false; prevcity = city; } } if (accept) nodeRoutes.add(r); }
boolean ok; ok = BBnode(userParam, nodeRoutes, newnode1, bestRoutes, depth + 1); nodeRoutes = null; // free memory if (!ok) { return false; }
branching.son0 = newnode1;
// second branch -> set edges[bestEdge1][bestEdge2]=1 // record the branching information in a tree list treeBB newnode2 = new treeBB(); newnode2.father = branching; newnode2.branchFrom = bestEdge1; newnode2.branchTo = bestEdge2; newnode2.branchValue = 1 - bestVal; // first version: always 1 newnode2.lowestValue = -1E10; newnode2.son0 = null;
// branching on edges[bestEdge1][bestEdge2]=1 // second branching=>need to reinitialize the dist matrix for (i = 0; i < userParam.nbclients + 2; i++) System.arraycopy(userParam.distBase[i], 0, userParam.dist[i], 0, userParam.nbclients + 2); EdgesBasedOnBranching(userParam, newnode2, true); // the initial lp for the CG contains all the routes of the previous // solution less the routes incompatible with this arc ArrayList nodeRoutes2 = new ArrayList(); for (route r : routes) { ArrayList path = r.getpath(); boolean accept = true; if (path.size() > 3) { // we must keep trivial routes // Depot-City-Depot in the set to ensure // feasibility of the CG prevcity = 0; for (i = 1; accept && (i < path.size()); i++) { city = path.get(i); if (userParam.dist[prevcity][city] >= userParam.verybig - 1E-6) accept = false; prevcity = city; } } if (accept) nodeRoutes2.add(r);
} ok = BBnode(userParam, nodeRoutes2, newnode2, bestRoutes, depth + 1); nodeRoutes2 = null;
// update lowest feasible value of this node branching.lowestValue = (newnode1.lowestValue < newnode2.lowestValue) ? newnode1.lowestValue : newnode2.lowestValue;
return ok;
} }
} catch (IOException e) { System.err.println("Error: " + e); } return false; }
Column Generation的过程如下,Master Problem采用vrptw的set covering model 的松弛模型,利用cplex建模求解,求解的结果作为branch and bound的lower bound:
  public double computeColGen(paramsVRP userParam, ArrayList routes)      throws IOException {    int i, j, prevcity, city;    double cost, obj;    double[] pi;    boolean oncemore;
try {
// --------------------------------------------------------- // construct the model for the Restricted Master Problem // --------------------------------------------------------- // warning: for clarity, we create a new cplex env each time we start a // Column Generation // this class contains (nearly) everything about CG and could be used // independently // However, since the final goal is to encompass it inside 锟� Branch and // Bound (BB), // it would (probably) be better to create only once the CPlex env when we // initiate the BB and to work with the same (but adjusted) lp matrix each // time IloCplex cplex = new IloCplex();
IloObjective objfunc = cplex.addMinimize();
// for each vertex/client, one constraint (chapter 3, 3.23 ) IloRange[] lpmatrix = new IloRange[userParam.nbclients]; for (i = 0; i < userParam.nbclients; i++) lpmatrix[i] = cplex.addRange(1.0, Double.MAX_VALUE); // for each constraint, right member >=1 // lpmatrix[i] = cplex.addRange(1.0, 1.0); // or for each constraint, right member=1 ... what is the best?
// Declaration of the variables IloNumVarArray y = new IloNumVarArray(); // y_p to define whether a path p // is used
// Populate the lp matrix and the objective function // first with the routes provided by the argument 'routes' of the function // (in the context of the Branch and Bound, it would be a pity to start // again the CG from scratch at each node of the BB!) // (we should reuse parts of the previous solution(s)) for (route r : routes) { int v; cost = 0.0; prevcity = 0; for (i = 1; i < r.getpath().size(); i++) { city = r.getpath().get(i); cost += userParam.dist[prevcity][city]; prevcity = city; }
r.setcost(cost); IloColumn column = cplex.column(objfunc, r.getcost()); // obj coefficient for (i = 1; i < r.getpath().size() - 1; i++) { v = r.getpath().get(i) - 1; column = column.and(cplex.column(lpmatrix[v], 1.0)); // coefficient of y_i in (3.23) => 0 for the other y_p } y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); // creation of the variable y_i } // complete the lp with basic route to ensure feasibility if (routes.size() < userParam.nbclients) { // a priori true only the first time for (i = 0; i < userParam.nbclients; i++) { cost = userParam.dist[0][i + 1] + userParam.dist[i + 1][userParam.nbclients + 1]; IloColumn column = cplex.column(objfunc, cost); // obj coefficient column = column.and(cplex.column(lpmatrix[i], 1.0)); // coefficient of // y_i in (3.23) // => 0 for the // other y_p y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); // creation of the // variable y_i route newroute = new route(); newroute.addcity(0); newroute.addcity(i + 1); newroute.addcity(userParam.nbclients + 1); newroute.setcost(cost); routes.add(newroute); } }
// cplex.exportModel("model.lp");
// CPlex params cplex.setParam(IloCplex.IntParam.RootAlg, IloCplex.Algorithm.Primal); cplex.setOut(null); // cplex.setParam(IloCplex.DoubleParam.TiLim,30); // max number of // seconds: 2h=7200 24h=86400
// --------------------------------------------------------- // column generation process // --------------------------------------------------------- DecimalFormat df = new DecimalFormat("#0000.00"); oncemore = true; double[] prevobj = new double[100]; int nbroute; int previ = -1; while (oncemore) {
oncemore = false; // ---------------------------------------s------------------ // solve the current RMP // --------------------------------------------------------- if (!cplex.solve()) { System.out.println("CG: relaxation infeasible!"); return 1E10; } prevobj[(++previ) % 100] = cplex.getObjValue(); // store the 30 last obj values to check stability afterwards
// System.out.println(cplex.getStatus()); // cplex.exportModel("model.lp");
// --------------------------------------------------------- // solve the subproblem to find new columns (if any) // --------------------------------------------------------- // first define the new costs for the subproblem objective function // (SPPRC) pi = cplex.getDuals(lpmatrix); for (i = 1; i < userParam.nbclients + 1; i++) for (j = 0; j < userParam.nbclients + 2; j++) userParam.cost[i][j] = userParam.dist[i][j] - pi[i - 1];
// start dynamic programming SPPRC sp = new SPPRC(); ArrayList routesSPPRC = new ArrayList();
nbroute = userParam.nbclients; // arbitrarily limit to the 5 first // shortest paths with negative cost // if ((previ>100) && // (prevobj[(previ-3)%100]-prevobj[previ%100]<0.0003*Math.abs((prevobj[(previ-99)%100]-prevobj[previ%100])))) // { // System.out.print("/"); // complete=true; // it the convergence is too slow, start a "complete" // shortestpast // } sp.shortestPath(userParam, routesSPPRC, nbroute); sp = null;
// ///////////////////////////// // parameter here if (routesSPPRC.size() > 0) { for (route r : routesSPPRC) {// if (userParam.debug) {// System.out.println(" "+r.getcost());// } ArrayList rout = r.getpath(); prevcity = rout.get(1); cost = userParam.dist[0][prevcity]; IloColumn column = cplex.column(lpmatrix[rout.get(1) - 1], 1.0); for (i = 2; i < rout.size() - 1; i++) { city = rout.get(i); cost += userParam.dist[prevcity][city]; prevcity = city; column = column.and(cplex.column(lpmatrix[rout.get(i) - 1], 1.0)); // coefficient of y_i in (3.23) => 0 for the other y_p } cost += userParam.dist[prevcity][userParam.nbclients + 1]; column = column.and(cplex.column(objfunc, cost)); y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE, "P" + routes.size())); // creation of the variable y_i r.setcost(cost); routes.add(r);
oncemore = true; } System.out.print("\nCG Iter " + previ + " Current cost: " + df.format(prevobj[previ % 100]) + " " + routes.size() + " routes"); System.out.flush(); } //if (previ % 50 == 0) routesSPPRC = null; }
System.out.println();
for (i = 0; i < y.getSize(); i++) routes.get(i).setQ(cplex.getValue(y.getElement(i))); obj = cplex.getObjValue(); // mmmmhhh: to check. To be entirely safe, we // should recompute the obj using the distBase // matrix instead of the dist matrix
cplex.end(); return obj; } catch (IloException e) { System.err.println("Concert exception caught '" + e + "' caught"); } return 1E10; }

ESPPRC的算法如下,采用label setting算法,感觉速度还可以,具体原理参照往期推文:
  public void shortestPath(paramsVRP userParamArg, ArrayList routes,int nbroute) {    label current;    int i,j,idx,nbsol,maxsol;    double d,d2;    int[]  checkDom;    float tt,tt2;    Integer currentidx;
this.userParam=userParamArg; // unprocessed labels list => ordered TreeSet List (?optimal: need to be sorted like this?) TreeSet U = new TreeSet(new MyLabelComparator()); // unprocessed labels list
// processed labels list => ordered TreeSet List TreeSet P = new TreeSet(new MyLabelComparator()); // unprocessed labels list
// array of labels labels = new ArrayList boolean[] cust= new boolean[userParam.nbclients+2]; cust[0]=true; for (i=1;i2;i++) cust[i]=false; labels.add(new label(0,-1,0.0,0,0,false,cust)); // first label: start from depot (client 0) U.add(0);
// for each city, an array with the index of the corresponding labels (for dominance) checkDom = new int[userParam.nbclients+2]; ArrayList[] city2labels = new ArrayList[userParam.nbclients+2]; for (i=0;i2;i++) { city2labels[i]=new ArrayList(); checkDom[i]=0; // index of the first label in city2labels that needs to be checked for dominance (last labels added) } city2labels[0].add(0);
nbsol = 0; maxsol = 2 * nbroute; while ((U.size()>0) && (nbsol // second term if we want to limit to the first solutions encountered to speed up the SPPRC (perhaps not the BP) // remark: we'll keep only nbroute, but we compute 2xnbroute! It makes a huge difference=>we'll keep the most negative ones // this is something to analyze further! how many solutions to keep and which ones? // process one label => get the index AND remove it from U currentidx = U.pollFirst(); current = labels.get(currentidx);
// check for dominance // code not fully optimized: int l1,l2; boolean pathdom; label la1,la2; ArrayList cleaning = new ArrayList(); for (i = checkDom[current.city]; i < city2labels[current.city].size(); i++) { // check for dominance between the labels added since the last time we came here with this city and all the other ones for (j = 0; j < i; j++) { l1 = city2labels[current.city].get(i); l2 = city2labels[current.city].get(j); la1 = labels.get(l1); la2 = labels.get(l2); if (!(la1.dominated || la2.dominated)) { // could happen since we clean 'city2labels' thanks to 'cleaning' only after the double loop pathdom = true; for (int k = 1; pathdom && (k < userParam.nbclients+2); k++) pathdom=(!la1.vertexVisited[k] || la2.vertexVisited[k]); if (pathdom && (la1.cost<=la2.cost) && (la1.ttime<=la2.ttime) && (la1.demand<=la2.demand)) { labels.get(l2).dominated = true; U.remove((Integer) l2); cleaning.add(l2); pathdom = false; //System.out.print(" ###Remove"+l2); } pathdom = true; for (int k = 1; pathdom && (k < userParam.nbclients + 2); k++) pathdom = (!la2.vertexVisited[k] || la1.vertexVisited[k]);
if (pathdom && (la2.cost<=la1.cost) && (la2.ttime<=la1.ttime) && (la2.demand<=la1.demand)) { labels.get(l1).dominated = true; U.remove(l1); cleaning.add(l1); //System.out.print(" ###Remove"+l1); j = city2labels[current.city].size(); } } } }
for (Integer c : cleaning) city2labels[current.city].remove((Integer) c); // a little bit confusing but ok since c is an Integer and not an int!
cleaning = null; checkDom[current.city] = city2labels[current.city].size(); // update checkDom: all labels currently in city2labels were checked for dom.
// expand REF if (!current.dominated){ //System.out.println("Label "+current.city+" "+current.indexPrevLabel+" "+current.cost+" "+current.ttime+" "+current.dominated); if (current.city == userParam.nbclients + 1) { // shortest path candidate to the depot! if (current.cost<-1e-7) { // SP candidate for the column generation P.add(currentidx); nbsol=0; for (Integer labi : P) { label s = labels.get(labi); if (!s.dominated) nbsol++; } } } else { // if not the depot, we can consider extensions of the path for (i = 0; i < userParam.nbclients + 2; i++) { if ((!current.vertexVisited[i]) && (userParam.dist[current.city][i] < userParam.verybig-1e-6)) { // don't go back to a vertex already visited or along a forbidden edge // ttime tt = (float) (current.ttime + userParam.ttime[current.city][i] + userParam.s[current.city]); if (tt < userParam.a[i]) tt = userParam.a[i]; // demand d = current.demand + userParam.d[i]; //System.out.println(" -- "+i+" d:"+d+" t:"+tt);
// is feasible? if ((tt <= userParam.b[i]) && (d <= userParam.capacity)) { idx = labels.size(); boolean[] newcust = new boolean[userParam.nbclients + 2]; System.arraycopy(current.vertexVisited, 0, newcust, 0, userParam.nbclients + 2); newcust[i] = true; //speedup: third technique - Feillet 2004 as mentioned in Laporte's paper for (j=1;j<=userParam.nbclients;j++) if (!newcust[j]) { tt2=(float) (tt+userParam.ttime[i][j]+userParam.s[i]); d2=d+userParam.d[j]; if ((tt2>userParam.b[j]) || (d2>userParam.capacity)) newcust[j]=true; // useless to visit this client }
labels.add(new label(i, currentidx, current.cost+userParam.cost[current.city][i], tt, d, false, newcust)); // first label: start from depot (client 0) if (!U.add((Integer) idx)) { // only happens if there exists already a label at this vertex with the same cost, time and demand and visiting the same cities before // It can happen with some paths where the order of the cities is permuted labels.get(idx).dominated = true; // => we can forget this label and keep only the other one } else city2labels[i].add(idx);
} } } } } } // clean checkDom = null;
// filtering: find the path from depot to the destination Integer lab; i = 0; while ((i < nbroute) && ((lab = P.pollFirst()) != null)) { label s = labels.get(lab); if (!s.dominated) { if (/*(i < nbroute / 2) ||*/ (s.cost < -1e-4)) { // System.out.println(s.cost);// if(s.cost > 0) {// System.out.println("warning >>>>>>>>>>>>>>>>>>>>");// } route newroute = new route(); newroute.setcost(s.cost); newroute.addcity(s.city); int path = s.indexPrevLabel; while (path >= 0) { newroute.addcity(labels.get(path).city); path = labels.get(path).indexPrevLabel; } newroute.switchpath(); routes.add(newroute); i++; } }
} }


没想到吧,一个算法就包含了这么多知识点,没点基础真的是搞不定的哦~
大家好好加油吧哈哈。

a9b1d0f6c5a6f494ca52aaaf1db33681.webp
【如对代码有疑问,可联系小编,可以提供有偿辅导服务】【有偿辅导纯属个人行为,与团队无关】
最后的最后,祝大家学有所成。


END


 赞 赏 

长按下方二维码打赏感谢您,支持学生们的原创热情!


郑重承诺打赏是对工作的认可所有打赏所得都将作为酬劳支付给辛勤工作的学生指导老师不取一文



 
 精彩文章推荐干货 | 10分钟带你全面掌握branch and bound(分支定界)算法-概念篇干货 | 10分钟搞懂branch and bound算法的代码实现附带java代码干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题cplex教学 | 分支定界法(branch and bound)解带时间窗的车辆路径规划问题(附代码及详细注释)干货 | 10分钟带你彻底了解Column Generation(列生成)算法的原理附java代码运筹学教学|列生成(Column Generation)算法(附代码及详细注释)干货 | 10分钟教你使用Column Generation求解VRPTW的线性松弛模型干货 | 求解VRPTW松弛模型的Column Generation算法的JAVA代码分享干货 | VRPTW子问题ESPPRC的介绍及其求解算法的C++代码e7a13ae1f12fb5c4cc8321579dbd99e6.webp


---The End---


文案 && 编辑:邓发珩审稿人:秦时明岳(华中科技大学管理学院)指导老师:秦时明岳(华中科技大学管理学院)

如对文中内容有疑问,欢迎交流。PS:部分资料来自网络。如有需求,可以联系:秦虎老师(professor.qin@qq.com)邓发珩 (华中科技大学管理学院本科三年级:2638512393@qq.com、个人公众号:程序猿声)


扫一扫,获取数据和模型还有更多算法学习课件分享哟


浏览 49
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报