干货 | Branch and Price算法求解VRPTW问题(附JAVA代码分享)
写在前面

最后,大家可以关注一下小编的公众号,上面不仅有关于算法的分享,还有python等好玩的东西:
算法介绍
1. Branch and Bound:分支定界,下界使用Column Generation求解。
2. Column Generation:列生成算法,求解VRPWTW松弛模型的最优解。
3. ESPPRC-Label Setting:求解VRPTW的子问题(pricing problem),标号法求解。
算法的运行效果如下:

算例用的是标准Solomon25。大部分,一轮Column Generation就能直接得到整数解,可能是巧合。也有部分算例需要branch。
更改输入算例在Main.java:

更改算例后同时也要更改客户数,在paramsVRP.java:

可参考的推文如下
CPLEX:
1. 干货 | cplex介绍、下载和安装以及java环境配置和API简单说明
2. 干货 | JAVA调用cplex求解一个TSP模型详解
3. 干货|十分钟快速掌握CPLEX求解VRPTW数学模型(附JAVA代码及CPLEX安装流程)
1. 干货 | 10分钟带你全面掌握branch and bound(分支定界)算法-概念篇
2. 干货 | 10分钟搞懂branch and bound算法的代码实现附带java代码
3. 干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题
4. cplex教学 | 分支定界法(branch and bound)解带时间窗的车辆路径规划问题(附代码及详细注释)
Column Generation
1. 干货 | 10分钟带你彻底了解Column Generation(列生成)算法的原理附java代码
2. 运筹学教学|列生成(Column Generation)算法(附代码及详细注释)
3. 干货 | 10分钟教你使用Column Generation求解VRPTW的线性松弛模型
4. 干货 | 求解VRPTW松弛模型的Column Generation算法的JAVA代码分享
2. 标号法(label-setting algorithm)求解带时间窗的最短路问题
可参考的文献如下
Pricing SPPRC : chapter 2, Shortest Path Problems with Resource Constraints 33 Stefan Irnich and Guy Desaulniers
代码解析如下
Branch and Bound的过程如下(具体参考此前讲过的算法原理):
Column Generation的过程如下,Master Problem采用vrptw的set covering model 的松弛模型,利用cplex建模求解,求解的结果作为branch and bound的lower bound:public boolean BBnode(paramsVRP userParam, ArrayListroutes, treeBB branching, ArrayListbestRoutes, int depth )throws IOException {// userParam (input) : all the parameters provided by the users (cities,// roads...)// routes (input) : all (but we could decide to keep only a subset) the// routes considered up to now (to initialize the Column generation process)// branching (input): BB branching context information for the current node// to process (branching edge var, branching value, branching from...)// bestRoutes (output): best solution encounteredint i, j, bestEdge1, bestEdge2, prevcity, city, bestVal;double coef, bestObj, change, CGobj;boolean feasible;try {// check first that we need to solve this node. Not the case if we have// already found a solution within the gap precisionif ((upperbound - lowerbound) / upperbound < userParam.gap)return true;// initif (branching == null) { // root node - first call// first call - root nodetreeBB newnode = new treeBB();newnode.father = null;newnode.toplevel = true;newnode.branchFrom = -1;newnode.branchTo = -1;newnode.branchValue = -1;newnode.son0 = null;branching = newnode;}// display some local infoif (branching.branchValue < 1)System.out.println("\nEdge from " + branching.branchFrom + " to "+ branching.branchTo + ": forbid");elseSystem.out.println("\nEdge from " + branching.branchFrom + " to "+ branching.branchTo + ": set");int mb = 1024 * 1024;Runtime runtime = Runtime.getRuntime();System.out.print("Java Memory=> Total:" + (runtime.totalMemory() / mb)+ " Max:" + (runtime.maxMemory() / mb) + " Used:"+ ((runtime.totalMemory() - runtime.freeMemory()) / mb) + " Free: "+ runtime.freeMemory() / mb);// Compute a solution for this node using Column generationcolumngen CG = new columngen();CGobj = CG.computeColGen(userParam, routes);// feasible ? Does a solution exist?if ((CGobj > 2 * userParam.maxlength) || (CGobj < -1e-6)) {// can only be true when the routes in the solution include forbidden edges (can happen when the BB set branching values)System.out.println("RELAX INFEASIBLE | Lower bound: " + lowerbound+ " | Upper bound: " + upperbound + " | Gap: "+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "+ depth + " | " + routes.size() + " routes");return true; // stop this branch}branching.lowestValue = CGobj;// update the global lowerbound when requiredif ((branching.father != null) && (branching.father.son0 != null)&& branching.father.toplevel) {// all nodes above and on the left have been processed=> we can compute// a new lowerboundlowerbound = (branching.lowestValue > branching.father.son0.lowestValue) ? branching.father.son0.lowestValue: branching.lowestValue;branching.toplevel = true;} else if (branching.father == null) // root nodelowerbound = CGobj;if (branching.lowestValue > upperbound) {CG = null;System.out.println("CUT | Lower bound: " + lowerbound+ " | Upper bound: " + upperbound + " | Gap: "+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()+ " routes");return true; // cut this useless branch} else {// ///////////////////////////////////////////////////////////////////////////// check the (integer) feasibility. Otherwise search for a branching// variablefeasible = true;bestEdge1 = -1;bestEdge2 = -1;bestObj = -1.0;bestVal = 0;// transform the path variable (of the CG model) into edges variablesfor (i = 0; i < userParam.nbclients + 2; i++)java.util.Arrays.fill(userParam.edges[i], 0.0);for (route r : routes) {if (r.getQ() > 1e-6) { // we consider only the routes in the current// local solutionArrayListpath = r.getpath(); // get back the sequence of // cities (path for this// route)prevcity = 0;for (i = 1; i < path.size(); i++) {city = path.get(i);userParam.edges[prevcity][city] += r.getQ(); // convert into edgesprevcity = city;}}}// find a fractional edgefor (i = 0; i < userParam.nbclients + 2; i++) {for (j = 0; j < userParam.nbclients + 2; j++) {coef = userParam.edges[i][j];if ((coef > 1e-6)&& ((coef < 0.9999999999) || (coef > 1.0000000001))) {// this route has a fractional coefficient in the solution =>// should we branch on this one?feasible = false;// what if we impose this route in the solution? Q=1// keep the ref of the edge which should lead to the largest// changechange = (coef < Math.abs(1.0 - coef)) ? coef : Math.abs(1.0 - coef);change *= routes.get(i).getcost();if (change > bestObj) {bestEdge1 = i;bestEdge2 = j;bestObj = change;bestVal = (Math.abs(1.0 - coef) > coef) ? 0 : 1;}}}}CG = null;if (feasible) {if (branching.lowestValue < upperbound) { // new incumbant feasible solution!upperbound = branching.lowestValue;bestRoutes.clear();for (route r : routes) {if (r.getQ() > 1e-6) {route optim = new route();optim.setcost(r.getcost());optim.path = r.getpath();optim.setQ(r.getQ());bestRoutes.add(optim);}}System.out.println("OPT | Lower bound: " + lowerbound+ " | Upper bound: " + upperbound + " | Gap: "+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()+ " routes");System.out.flush();} elseSystem.out.println("FEAS | Lower bound: " + lowerbound+ " | Upper bound: " + upperbound + " | Gap: "+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()+ " routes");return feasible;} else {System.out.println("INTEG INFEAS | Lower bound: " + lowerbound+ " | Upper bound: " + upperbound + " | Gap: "+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()+ " routes");System.out.flush();// ///////////////////////////////////////////////////////////// branching (diving strategy)// first branch -> set edges[bestEdge1][bestEdge2]=0// record the branching information in a tree listtreeBB newnode1 = new treeBB();newnode1.father = branching;newnode1.branchFrom = bestEdge1;newnode1.branchTo = bestEdge2;newnode1.branchValue = bestVal; // first version was not with bestVal// but with 0newnode1.lowestValue = -1E10;newnode1.son0 = null;// branching on edges[bestEdge1][bestEdge2]=0EdgesBasedOnBranching(userParam, newnode1, false);// the initial lp for the CG contains all the routes of the previous// solution less the routes containing this arcArrayListnodeRoutes = new ArrayList (); for (route r : routes) {ArrayListpath = r.getpath(); boolean accept = true;if (path.size() > 3) { // we must keep trivial routes// Depot-City-Depot in the set to ensure// feasibility of the CGprevcity = 0;for (j = 1; accept && (j < path.size()); j++) {city = path.get(j);if ((prevcity == bestEdge1) && (city == bestEdge2))accept = false;prevcity = city;}}if (accept)nodeRoutes.add(r);}boolean ok;ok = BBnode(userParam, nodeRoutes, newnode1, bestRoutes, depth + 1);nodeRoutes = null; // free memoryif (!ok) {return false;}branching.son0 = newnode1;// second branch -> set edges[bestEdge1][bestEdge2]=1// record the branching information in a tree listtreeBB newnode2 = new treeBB();newnode2.father = branching;newnode2.branchFrom = bestEdge1;newnode2.branchTo = bestEdge2;newnode2.branchValue = 1 - bestVal; // first version: always 1newnode2.lowestValue = -1E10;newnode2.son0 = null;// branching on edges[bestEdge1][bestEdge2]=1// second branching=>need to reinitialize the dist matrixfor (i = 0; i < userParam.nbclients + 2; i++)System.arraycopy(userParam.distBase[i], 0, userParam.dist[i], 0,userParam.nbclients + 2);EdgesBasedOnBranching(userParam, newnode2, true);// the initial lp for the CG contains all the routes of the previous// solution less the routes incompatible with this arcArrayListnodeRoutes2 = new ArrayList (); for (route r : routes) {ArrayListpath = r.getpath(); boolean accept = true;if (path.size() > 3) { // we must keep trivial routes// Depot-City-Depot in the set to ensure// feasibility of the CGprevcity = 0;for (i = 1; accept && (i < path.size()); i++) {city = path.get(i);if (userParam.dist[prevcity][city] >= userParam.verybig - 1E-6)accept = false;prevcity = city;}}if (accept)nodeRoutes2.add(r);}ok = BBnode(userParam, nodeRoutes2, newnode2, bestRoutes, depth + 1);nodeRoutes2 = null;// update lowest feasible value of this nodebranching.lowestValue = (newnode1.lowestValue < newnode2.lowestValue) ? newnode1.lowestValue: newnode2.lowestValue;return ok;}}} catch (IOException e) {System.err.println("Error: " + e);}return false;}
public double computeColGen(paramsVRP userParam, ArrayListroutes) throws IOException {int i, j, prevcity, city;double cost, obj;double[] pi;boolean oncemore;try {// ---------------------------------------------------------// construct the model for the Restricted Master Problem// ---------------------------------------------------------// warning: for clarity, we create a new cplex env each time we start a// Column Generation// this class contains (nearly) everything about CG and could be used// independently// However, since the final goal is to encompass it inside 锟� Branch and// Bound (BB),// it would (probably) be better to create only once the CPlex env when we// initiate the BB and to work with the same (but adjusted) lp matrix each// timeIloCplex cplex = new IloCplex();IloObjective objfunc = cplex.addMinimize();// for each vertex/client, one constraint (chapter 3, 3.23 )IloRange[] lpmatrix = new IloRange[userParam.nbclients];for (i = 0; i < userParam.nbclients; i++)lpmatrix[i] = cplex.addRange(1.0, Double.MAX_VALUE);// for each constraint, right member >=1// lpmatrix[i] = cplex.addRange(1.0, 1.0);// or for each constraint, right member=1 ... what is the best?// Declaration of the variablesIloNumVarArray y = new IloNumVarArray(); // y_p to define whether a path p// is used// Populate the lp matrix and the objective function// first with the routes provided by the argument 'routes' of the function// (in the context of the Branch and Bound, it would be a pity to start// again the CG from scratch at each node of the BB!)// (we should reuse parts of the previous solution(s))for (route r : routes) {int v;cost = 0.0;prevcity = 0;for (i = 1; i < r.getpath().size(); i++) {city = r.getpath().get(i);cost += userParam.dist[prevcity][city];prevcity = city;}r.setcost(cost);IloColumn column = cplex.column(objfunc, r.getcost());// obj coefficientfor (i = 1; i < r.getpath().size() - 1; i++) {v = r.getpath().get(i) - 1;column = column.and(cplex.column(lpmatrix[v], 1.0));// coefficient of y_i in (3.23) => 0 for the other y_p}y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE));// creation of the variable y_i}// complete the lp with basic route to ensure feasibilityif (routes.size() < userParam.nbclients) { // a priori true only the first timefor (i = 0; i < userParam.nbclients; i++) {cost = userParam.dist[0][i + 1]+ userParam.dist[i + 1][userParam.nbclients + 1];IloColumn column = cplex.column(objfunc, cost); // obj coefficientcolumn = column.and(cplex.column(lpmatrix[i], 1.0)); // coefficient of// y_i in (3.23)// => 0 for the// other y_py.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); // creation of the// variable y_iroute newroute = new route();newroute.addcity(0);newroute.addcity(i + 1);newroute.addcity(userParam.nbclients + 1);newroute.setcost(cost);routes.add(newroute);}}// cplex.exportModel("model.lp");// CPlex paramscplex.setParam(IloCplex.IntParam.RootAlg, IloCplex.Algorithm.Primal);cplex.setOut(null);// cplex.setParam(IloCplex.DoubleParam.TiLim,30); // max number of// seconds: 2h=7200 24h=86400// ---------------------------------------------------------// column generation process// ---------------------------------------------------------DecimalFormat df = new DecimalFormat("#0000.00");oncemore = true;double[] prevobj = new double[100];int nbroute;int previ = -1;while (oncemore) {oncemore = false;// ---------------------------------------s------------------// solve the current RMP// ---------------------------------------------------------if (!cplex.solve()) {System.out.println("CG: relaxation infeasible!");return 1E10;}prevobj[(++previ) % 100] = cplex.getObjValue();// store the 30 last obj values to check stability afterwards// System.out.println(cplex.getStatus());// cplex.exportModel("model.lp");// ---------------------------------------------------------// solve the subproblem to find new columns (if any)// ---------------------------------------------------------// first define the new costs for the subproblem objective function// (SPPRC)pi = cplex.getDuals(lpmatrix);for (i = 1; i < userParam.nbclients + 1; i++)for (j = 0; j < userParam.nbclients + 2; j++)userParam.cost[i][j] = userParam.dist[i][j] - pi[i - 1];// start dynamic programmingSPPRC sp = new SPPRC();ArrayListroutesSPPRC = new ArrayList (); nbroute = userParam.nbclients; // arbitrarily limit to the 5 first// shortest paths with negative cost// if ((previ>100) &&// (prevobj[(previ-3)%100]-prevobj[previ%100]<0.0003*Math.abs((prevobj[(previ-99)%100]-prevobj[previ%100]))))// {// System.out.print("/");// complete=true; // it the convergence is too slow, start a "complete"// shortestpast// }sp.shortestPath(userParam, routesSPPRC, nbroute);sp = null;// /////////////////////////////// parameter hereif (routesSPPRC.size() > 0) {for (route r : routesSPPRC) {// if (userParam.debug) {// System.out.println(" "+r.getcost());// }ArrayListrout = r.getpath(); prevcity = rout.get(1);cost = userParam.dist[0][prevcity];IloColumn column = cplex.column(lpmatrix[rout.get(1) - 1], 1.0);for (i = 2; i < rout.size() - 1; i++) {city = rout.get(i);cost += userParam.dist[prevcity][city];prevcity = city;column = column.and(cplex.column(lpmatrix[rout.get(i) - 1], 1.0));// coefficient of y_i in (3.23) => 0 for the other y_p}cost += userParam.dist[prevcity][userParam.nbclients + 1];column = column.and(cplex.column(objfunc, cost));y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE,"P" + routes.size())); // creation of the variable y_ir.setcost(cost);routes.add(r);oncemore = true;}System.out.print("\nCG Iter " + previ + " Current cost: "+ df.format(prevobj[previ % 100]) + " " + routes.size()+ " routes");System.out.flush();}//if (previ % 50 == 0)routesSPPRC = null;}System.out.println();for (i = 0; i < y.getSize(); i++)routes.get(i).setQ(cplex.getValue(y.getElement(i)));obj = cplex.getObjValue(); // mmmmhhh: to check. To be entirely safe, we// should recompute the obj using the distBase// matrix instead of the dist matrixcplex.end();return obj;} catch (IloException e) {System.err.println("Concert exception caught '" + e + "' caught");}return 1E10;}
ESPPRC的算法如下,采用label setting算法,感觉速度还可以,具体原理参照往期推文:
public void shortestPath(paramsVRP userParamArg, ArrayListroutes,int nbroute ) {label current;int i,j,idx,nbsol,maxsol;double d,d2;int[] checkDom;float tt,tt2;Integer currentidx;this.userParam=userParamArg;// unprocessed labels list => ordered TreeSet List (?optimal: need to be sorted like this?)TreeSetU = new TreeSet (new MyLabelComparator()); // unprocessed labels list // processed labels list => ordered TreeSet ListTreeSetP = new TreeSet (new MyLabelComparator()); // unprocessed labels list // array of labelslabels = new ArrayListboolean[] cust= new boolean[userParam.nbclients+2];cust[0]=true;for (i=1;i2 ;i++)cust[i]=false;labels.add(new label(0,-1,0.0,0,0,false,cust)); // first label: start from depot (client 0)U.add(0);// for each city, an array with the index of the corresponding labels (for dominance)checkDom = new int[userParam.nbclients+2];ArrayList[] city2labels = new ArrayList[userParam.nbclients+2]; for (i=0;i2 ;i++) {city2labels[i]=new ArrayList(); checkDom[i]=0; // index of the first label in city2labels that needs to be checked for dominance (last labels added)}city2labels[0].add(0);nbsol = 0;maxsol = 2 * nbroute;while ((U.size()>0) && (nbsol// second term if we want to limit to the first solutions encountered to speed up the SPPRC (perhaps not the BP)// remark: we'll keep only nbroute, but we compute 2xnbroute! It makes a huge difference=>we'll keep the most negative ones// this is something to analyze further! how many solutions to keep and which ones?// process one label => get the index AND remove it from Ucurrentidx = U.pollFirst();current = labels.get(currentidx);// check for dominance// code not fully optimized:int l1,l2;boolean pathdom;label la1,la2;ArrayListcleaning = new ArrayList (); for (i = checkDom[current.city]; i < city2labels[current.city].size(); i++) { // check for dominance between the labels added since the last time we came here with this city and all the other onesfor (j = 0; j < i; j++) {l1 = city2labels[current.city].get(i);l2 = city2labels[current.city].get(j);la1 = labels.get(l1);la2 = labels.get(l2);if (!(la1.dominated || la2.dominated)) { // could happen since we clean 'city2labels' thanks to 'cleaning' only after the double looppathdom = true;for (int k = 1; pathdom && (k < userParam.nbclients+2); k++)pathdom=(!la1.vertexVisited[k] || la2.vertexVisited[k]);if (pathdom && (la1.cost<=la2.cost) && (la1.ttime<=la2.ttime) && (la1.demand<=la2.demand)) {labels.get(l2).dominated = true;U.remove((Integer) l2);cleaning.add(l2);pathdom = false;//System.out.print(" ###Remove"+l2);}pathdom = true;for (int k = 1; pathdom && (k < userParam.nbclients + 2); k++)pathdom = (!la2.vertexVisited[k] || la1.vertexVisited[k]);if (pathdom && (la2.cost<=la1.cost) && (la2.ttime<=la1.ttime) && (la2.demand<=la1.demand)) {labels.get(l1).dominated = true;U.remove(l1);cleaning.add(l1);//System.out.print(" ###Remove"+l1);j = city2labels[current.city].size();}}}}for (Integer c : cleaning)city2labels[current.city].remove((Integer) c); // a little bit confusing but ok since c is an Integer and not an int!cleaning = null;checkDom[current.city] = city2labels[current.city].size(); // update checkDom: all labels currently in city2labels were checked for dom.// expand REFif (!current.dominated){//System.out.println("Label "+current.city+" "+current.indexPrevLabel+" "+current.cost+" "+current.ttime+" "+current.dominated);if (current.city == userParam.nbclients + 1) { // shortest path candidate to the depot!if (current.cost<-1e-7) { // SP candidate for the column generationP.add(currentidx);nbsol=0;for (Integer labi : P) {label s = labels.get(labi);if (!s.dominated)nbsol++;}}} else { // if not the depot, we can consider extensions of the pathfor (i = 0; i < userParam.nbclients + 2; i++) {if ((!current.vertexVisited[i]) && (userParam.dist[current.city][i] < userParam.verybig-1e-6)) { // don't go back to a vertex already visited or along a forbidden edge// ttimett = (float) (current.ttime + userParam.ttime[current.city][i] + userParam.s[current.city]);if (tt < userParam.a[i])tt = userParam.a[i];// demandd = current.demand + userParam.d[i];//System.out.println(" -- "+i+" d:"+d+" t:"+tt);// is feasible?if ((tt <= userParam.b[i]) && (d <= userParam.capacity)) {idx = labels.size();boolean[] newcust = new boolean[userParam.nbclients + 2];System.arraycopy(current.vertexVisited, 0, newcust, 0, userParam.nbclients + 2);newcust[i] = true;//speedup: third technique - Feillet 2004 as mentioned in Laporte's paperfor (j=1;j<=userParam.nbclients;j++)if (!newcust[j]) {tt2=(float) (tt+userParam.ttime[i][j]+userParam.s[i]);d2=d+userParam.d[j];if ((tt2>userParam.b[j]) || (d2>userParam.capacity))newcust[j]=true; // useless to visit this client}labels.add(new label(i, currentidx, current.cost+userParam.cost[current.city][i], tt, d, false, newcust)); // first label: start from depot (client 0)if (!U.add((Integer) idx)) {// only happens if there exists already a label at this vertex with the same cost, time and demand and visiting the same cities before// It can happen with some paths where the order of the cities is permutedlabels.get(idx).dominated = true; // => we can forget this label and keep only the other one} elsecity2labels[i].add(idx);}}}}}}// cleancheckDom = null;// filtering: find the path from depot to the destinationInteger lab;i = 0;while ((i < nbroute) && ((lab = P.pollFirst()) != null)) {label s = labels.get(lab);if (!s.dominated) {if (/*(i < nbroute / 2) ||*/ (s.cost < -1e-4)) {// System.out.println(s.cost);// if(s.cost > 0) {// System.out.println("warning >>>>>>>>>>>>>>>>>>>>");// }route newroute = new route();newroute.setcost(s.cost);newroute.addcity(s.city);int path = s.indexPrevLabel;while (path >= 0) {newroute.addcity(labels.get(path).city);path = labels.get(path).indexPrevLabel;}newroute.switchpath();routes.add(newroute);i++;}}}}
没想到吧,一个算法就包含了这么多知识点,没点基础真的是搞不定的哦~
大家好好加油吧哈哈。

【如对代码有疑问,可联系小编,可以提供有偿辅导服务】【有偿辅导纯属个人行为,与团队无关】
最后的最后,祝大家学有所成。
END
赞 赏
长按下方二维码打赏感谢您,支持学生们的原创热情!精彩文章推荐干货 | 10分钟带你全面掌握branch and bound(分支定界)算法-概念篇干货 | 10分钟搞懂branch and bound算法的代码实现附带java代码干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题cplex教学 | 分支定界法(branch and bound)解带时间窗的车辆路径规划问题(附代码及详细注释)干货 | 10分钟带你彻底了解Column Generation(列生成)算法的原理附java代码运筹学教学|列生成(Column Generation)算法(附代码及详细注释)干货 | 10分钟教你使用Column Generation求解VRPTW的线性松弛模型干货 | 求解VRPTW松弛模型的Column Generation算法的JAVA代码分享干货 | VRPTW子问题ESPPRC的介绍及其求解算法的C++代码

---The End---
文案 && 编辑:邓发珩审稿人:秦时明岳(华中科技大学管理学院)指导老师:秦时明岳(华中科技大学管理学院)
如对文中内容有疑问,欢迎交流。PS:部分资料来自网络。如有需求,可以联系:秦虎老师(professor.qin@qq.com)邓发珩 (华中科技大学管理学院本科三年级:2638512393@qq.com、个人公众号:程序猿声)
