数字图像处理基本知识
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。
图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。
输入(采集);存储;输出(显示);通信;图像处理与分析。
图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。
数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。
采样:采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。
量化:量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。
图像分辨率;采样率;采样值。
灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的关系
它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。
从灰度直方图中你可可以获得:
- 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧
- 明亮的图像的直方图则倾向于灰度值较大的右边一侧
- 对比度较低的图像对应的直方图窄而集中于灰度级的中部
- 对比度高的图像对应的直方图分布范围很宽而且分布均匀
在局部处理中,输出值仅与像素灰度有关的处理称为点处理。如:图像对比图增强,图像二值化。
在对输入图像进行处理时,计算某一输出像素值由输入图像像素的小领域中的像素值确定,这种处理称为局部处理。如:图像的移动平均平滑法,空间域锐化法。
图像增强、空域、平滑去噪
图像增强的目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的的增强图像的整体或局部特性,将原来不清晰的图像变得清晰或增强某些感兴趣的特征,扩大图像中不同物体的特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,将强图像判读和识别效果,满足某些特征分析的需求。
灰度直方图定义为数字图像中各灰度级与其出现的频数间的统计关系,它能描述该图像的概貌,例如图像的灰度范围,每个灰度级出现的频率,灰度级的分布,整幅图像的平均明暗和对比度等
图像的线性变换;图像的非线性变化;图像的直方图均衡化和规定化。
抑制噪声,改善图像质量
中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心像素的灰度值的滤波方法,它是一种非线性的平滑法,对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。
- 点处理:输出值仅与像素灰度有关的处理称为点处理。(直方图修正)
- 局部处理:计算某一输出像素值由输入图像像素的小领域中的像素值确定,这种处理称为局部处理。(灰度反转)
- 全局处理:图像某一像素灰度的变化与图像全部像素灰度值有关。(3x3平均模板)
图像变换、频域处理、频域
图像的几何变换(图像畸变校正、图像缩放:双线性插值、旋转、拼接)
图像变换(傅立叶、余弦、沃尔什-哈达玛、K-L变换、小波变换)
图像频域处理(增强算法:高频率提升、同态滤波;平滑去噪:低通滤波)
图像变换在数字图像处理与分析中起着很重要的作用,是一种常用的、有效的分析手段。图像变换的目的在于:使图像处理问题化;有利于图像特征提取;有助于从概念上增强对图像信息的理解。
- 空域法:直接对图像的像素灰度进行操作。常用算法:图像的灰度变换;直方图修正(均衡化、规定化);平滑和锐化处理;彩色增强。
- 频域法:在图像的变换域中,对图像的变换值进行操作,然后经逆变换获得所需要的增强结果。常用算法:低通滤波;高频提升滤波;同态滤波。
增强------------同态滤波器
去噪------------低通滤波器
边缘检测------------高通滤波器
a. 清除噪声,改善图像的视觉效果
b. 突出边缘有利于识别和处理
好消息,小白学视觉团队的知识星球开通啦,为了感谢大家的支持与厚爱,团队决定将价值149元的知识星球现时免费加入。各位小伙伴们要抓住机会哦!
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~