【统计学习方法】 第2章 感知机代码实现(二)
深度学习入门笔记
共 1217字,需浏览 3分钟
·
2021-02-04 22:47
点击上方“公众号”可订阅哦!
”只要你相信我,闭上眼就能到“
感知机的代码搞了一天才搞明白,做一个总结,我要坚持下去……
1
●
小标题
首先准备一条直线,在直线周围添加噪声,生成原始数据集,
import numpy as np
import random
import matplotlib.pyplot as plt
# 定义一个函数
def random_point_nearby_line(weight , bias , size = 10):
x_point = np.linspace(-1, 1, size)[:,np.newaxis]
noise = np.random.normal(0, 0.5, x_point.shape)
y_point = weight * x_point + bias + noise
input_arr = np.hstack((x_point, y_point))
return input_arr
# 直线的真正参数
real_weight = 2
real_bias = 1
size = 100
# 生成输入的数据
input_point = random_point_nearby_line(real_weight, real_bias, size)
# 给数据打标签,在直线之上还是直线之下,above=1,below=-1
label = np.sign(input_point[:,1] - (input_point[:,0] * real_weight + real_bias)).reshape((size, 1))
接下来是初始化参数,
# 初始化参数
weight = [0, 0]
bias = 0
learning_rate = 0.1
train_num = 1000
train_data = list(zip(input_point, label))
训练
for i in range(train_num):
train = random.choice(train_data)
[x1,x2],y_label = train;
y_predict = np.sign(weight[0]*x1 + weight[1]*x2 + bias)
# print("train data:x:(%d, %d) y:%d ==>y_predict:%d" %(x1,x2,y_label,y_predict))
if y_label*y_predict<=0:
weight[0] = weight[0] + learning_rate*y_label*x1
weight[1] = weight[1] + learning_rate*y_label*x2
bias = bias + learning_rate*y_label
print("update weight and bias:")
print(weight[0], weight[1], bias)
print("stop training :")
print(weight[0], weight[1], bias)
输出:
stop training :
[-1.28282828] [0.61316304] [-0.6]
可视化
for i in range(len(input_point)):
if label[i] == 1:
plt.plot(input_point[i][0], input_point[i][1], 'ro')
else:
plt.plot(input_point[i][0], input_point[i][1], 'bo')
#plt.plot()
x_1 = []
x_2 = []
for i in range(-1,3):
x_1.append(i)
x_2.append((-weight[0]*i-bias)/weight[1])
plt.plot(x_1,x_2)
plt.show()
END
扫码关注
微信号|sdxx_rmbj
评论