pandas100个骚操作:再见 for 循环!速度提升315倍!

共 6185字,需浏览 13分钟

 ·

2021-11-16 20:45

↑ 关注 + 星标 ,每天学Python新技能

后台回复【大礼包】送你Python自学大礼包

来源:Python数据科学

作者:东哥起飞


大家好,我是东哥。

本篇是pandas100个骚操作系列的第 11 篇:再见 for 循环!速度提升315倍!

系列内容,请看👉「pandas100个骚操作」话题,订阅后文章更新可第一时间推送至订阅号。


上一篇分享了一个从时间处理上的加速方法使用 Datetime 提速 50 倍运行速度!,本篇分享一个更常用的加速骚操作。
for是所有编程语言的基础语法,初学者为了快速实现功能,依懒性较强。但如果从运算时间性能上考虑可能不是特别好的选择。
本次东哥介绍几个常见的提速方法,一个比一个快,了解pandas本质,才能知道如何提速。
下面是一个例子,数据获取方式见文末
>>> import pandas as pd
# 导入数据集
>>> df = pd.read_csv('demand_profile.csv')
>>> df.head()
     date_time  energy_kwh
0  1/1/13 0:00       0.586
1  1/1/13 1:00       0.580
2  1/1/13 2:00       0.572
3  1/1/13 3:00       0.596
4  1/1/13 4:00       0.592
基于上面的数据,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下:

因此,如果你不知道如何提速,那正常第一想法可能就是用apply方法写一个函数,函数里面写好时间条件的逻辑代码。

def apply_tariff(kwh, hour):
    """计算每个小时的电费"""    
    if 0 <= hour < 7:
        rate = 12
    elif 7 <= hour < 17:
        rate = 20
    elif 17 <= hour < 24:
        rate = 28
    else:
        raise ValueError(f'Invalid hour: {hour}')
    return rate * kwh
然后使用for循环来遍历df,根据apply函数逻辑添加新的特征,如下:
>>> # 不赞同这种操作
>>> @timeit(repeat=3, number=100)
... def apply_tariff_loop(df):
...     """用for循环计算enery cost,并添加到列表"""
...     energy_cost_list = []
...     for i in range(len(df)):
...         # 获取用电量和时间(小时)
...         energy_used = df.iloc[i]['energy_kwh']
...         hour = df.iloc[i]['date_time'].hour
...         energy_cost = apply_tariff(energy_used, hour)
...         energy_cost_list.append(energy_cost)
...     df['cost_cents'] = energy_cost_list
... 
>>> apply_tariff_loop(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_loop` ran in average of 3.152 seconds.
对于那些写Pythonic风格的人来说,这个设计看起来很自然。然而,这个循环将会严重影响效率。原因有几个:
首先,它需要初始化一个将记录输出的列表。
其次,它使用不透明对象范围(0,len(df))循环,然后再应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。另外,还使用df.iloc [i]['date_time']执行所谓的链式索引,这通常会导致意外的结果。
这种方法的最大问题是计算的时间成本。对于8760行数据,此循环花费了3秒钟。
接下来,一起看下优化的提速方案。

一、使用 iterrows循环

第一种可以通过pandas引入iterrows方法让效率更高。这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。
.itertuples为每一行产生一个namedtuple,并且行的索引值作为元组的第一个元素。nametuplePythoncollections模块中的一种数据结构,其行为类似于Python元组,但具有可通过属性查找访问的字段。
.iterrowsDataFrame中的每一行产生(index,series)这样的元组。
在这个例子中使用.iterrows,我们看看这使用iterrows后效果如何。
>>> @timeit(repeat=3, number=100)
... def apply_tariff_iterrows(df):
...     energy_cost_list = []
...     for index, row in df.iterrows():
...         # 获取用电量和时间(小时)
...         energy_used = row['energy_kwh']
...         hour = row['date_time'].hour
...         # 添加cost列表
...         energy_cost = apply_tariff(energy_used, hour)
...         energy_cost_list.append(energy_cost)
...     df['cost_cents'] = energy_cost_list
...
>>> apply_tariff_iterrows(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_iterrows` ran in average of 0.713 seconds.
这样的语法更明确,并且行值引用中的混乱更少,因此它更具可读性。
时间成本方面:快了近5倍!
但是,还有更多的改进空间,理想情况是可以用pandas内置更快的方法完成。

二、pandas的apply方法

我们可以使用.apply方法而不是.iterrows进一步改进此操作。pandas.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。下面代码中,lambda函数将两列数据传递给apply_tariff()
>>> @timeit(repeat=3, number=100)
... def apply_tariff_withapply(df):
...     df['cost_cents'] = df.apply(
...         lambda row: apply_tariff(
...             kwh=row['energy_kwh'],
...             hour=row['date_time'].hour),
...         axis=1)
...
>>> apply_tariff_withapply(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_withapply` ran in average of 0.272 seconds.
apply的语法优点很明显,行数少,代码可读性高。在这种情况下,所花费的时间大约是iterrows方法的一半。
但是,这还不是“非常快”。一个原因是apply()将在内部尝试循环遍历Cython迭代器。但是在这种情况下,传递的lambda不是可以在Cython中处理的东西,因此它在Python中调用并不是那么快。
如果我们使用apply()方法获取10年的小时数据,那么将需要大约15分钟的处理时间。如果这个计算只是大规模计算的一小部分,那么真的应该提速了。这也就是矢量化操作派上用场的地方。

三、矢量化操作:使用.isin选择数据

什么是矢量化操作?
如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。
但是如何将条件计算应用为pandas中的矢量化运算?
一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。
在下面代码中,我们将看到如何使用pandas.isin()方法选择行,然后在矢量化操作中实现新特征的添加。在执行此操作之前,如果将date_time列设置为DataFrame的索引,会更方便:
# 将date_time列设置为DataFrame的索引
df.set_index('date_time', inplace=True)

@timeit(repeat=3, number=100)
def apply_tariff_isin(df):
    # 定义小时范围Boolean数组
    peak_hours = df.index.hour.isin(range(1724))
    shoulder_hours = df.index.hour.isin(range(717))
    off_peak_hours = df.index.hour.isin(range(07))

    # 使用上面apply_traffic函数中的定义
    df.loc[peak_hours, 'cost_cents'] = df.loc[peak_hours, 'energy_kwh'] * 28
    df.loc[shoulder_hours,'cost_cents'] = df.loc[shoulder_hours, 'energy_kwh'] * 20
    df.loc[off_peak_hours,'cost_cents'] = df.loc[off_peak_hours, 'energy_kwh'] * 12
我们来看一下结果如何。
>>> apply_tariff_isin(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_isin` ran in average of 0.010 seconds.
提示,上面.isin()方法返回的是一个布尔值数组,如下:
[FalseFalseFalse, ..., TrueTrueTrue]
布尔值标识了DataFrame索引datetimes是否落在了指定的小时范围内。然后把这些布尔数组传递给DataFrame.loc,将获得一个与这些小时匹配的DataFrame切片。然后再将切片乘以适当的费率,这就是一种快速的矢量化操作了。
上面的方法完全取代了我们最开始自定义的函数apply_tariff(),代码大大减少,同时速度起飞。
运行时间比Pythonic的for循环快315倍,比iterrows快71倍,比apply快27倍!

四、还能更快?

太刺激了,我们继续加速。
在上面apply_tariff_isin中,我们通过调用df.locdf.index.hour.isin三次来进行一些手动调整。如果我们有更精细的时间范围,你可能会说这个解决方案是不可扩展的。但在这种情况下,我们可以使用pandaspd.cut()函数来自动完成切割:
@timeit(repeat=3, number=100)
def apply_tariff_cut(df):
    cents_per_kwh = pd.cut(x=df.index.hour,
                           bins=[071724],
                           include_lowest=True,
                           labels=[122028]).astype(int)
    df['cost_cents'] = cents_per_kwh * df['energy_kwh']
上面代码pd.cut()会根据bin列表应用分组。
其中include_lowest参数表示第一个间隔是否应该是包含左边的。
这是一种完全矢量化的方法,它在时间方面是最快的:
>>> apply_tariff_cut(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_cut` ran in average of 0.003 seconds.
到目前为止,使用pandas处理的时间上基本快达到极限了!只需要花费不到一秒的时间即可处理完整的10年的小时数据集。
但是,最后一个其它选择,就是使用 NumPy,还可以更快!

五、使用Numpy继续加速

使用pandas时不应忘记的一点是PandasSeriesDataFrames是在NumPy库之上设计的。并且,pandas可以与NumPy阵列和操作无缝衔接。
下面我们使用NumPy的 digitize()函数更进一步。它类似于上面pandascut(),因为数据将被分箱,但这次它将由一个索引数组表示,这些索引表示每小时所属的bin。然后将这些索引应用于价格数组:
@timeit(repeat=3, number=100)
def apply_tariff_digitize(df):
    prices = np.array([122028])
    bins = np.digitize(df.index.hour.values, bins=[71724])
    df['cost_cents'] = prices[bins] * df['energy_kwh'].values
cut函数一样,这种语法非常简洁易读。
>>> apply_tariff_digitize(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_digitize` ran in average of 0.002 seconds.
0.002秒! 虽然仍有性能提升,但已经很边缘化了。

推荐阅读

  1. 发现一款好用到爆的数据库工具,被惊艳到了!

  2. Win11 神优化!CPU、内存占用暴降,速度傻快让人秒弃 Win10

  3. 新华社公布新增57个禁用词,三思而后言


浏览 23
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报