Forward DL深度学习推理加速框架

联合创作 · 2023-09-26 06:24

Forward 是一款腾讯研发并开源的 GPU 高性能推理加速框架。它提出了一种解析方案,可直接加载主流框架模型(Tensorflow / PyTorch / Keras / ONNX)转换成 TensorRT 推理加速引擎,帮助用户节省中间繁杂的模型转换或网络构建步骤。

相对于直接使用 TensorRT,Forward 更易用以及更容易扩展支持更多模型和算子。目前,Forward 除了覆盖支持主流的 CV,NLP 及推荐领域的深度学习模型外,还支持一些诸如 BERT,FaceSwap,StyleTransfer 这类高级模型。

特性

  • 模型性能优化高:基于 TensorRT API 开发网络层级的支持,保证对于通用网络层级的推理性能优化处于最优级别;
  • 模型支持范围广:除了通用的 CV,NLP,及推荐类模型,还支持一些诸如 BERT,FaceSwap,StyleTransfer 这类高级模型;
  • 多种推理模式:支持 FLOAT / HALF / INT8 推理模式;
  • 接口简单易用:直接导入已训练好的 Tensorflow(.pb) / PyTorch(.pth) / Keras(.h5) / ONNX(.onnx) 模型文件,隐式转换为高性能的推理 Engine 进行推理加速;
  • 支持自研扩展:可根据业务模型扩展支持自定义网络层级
  • 支持 C++ 和 Python 接口调用

快速上手 Forward

环境依赖

  • NVIDIA CUDA >= 10.0, CuDNN >= 7 (推荐 CUDA 10.2 以上)
  • TensorRT >= 7.0.0.11 (推荐 TensorRT-7.2.1.6)
  • CMake >= 3.12.2
  • GCC >= 5.4.0, ld >= 2.26.1
  • PyTorch >= 1.7.0
  • TensorFlow >= 1.15.0 (若使用 Linux 操作系统,需额外下载 Tensorflow 1.15.0,并将解压出来的 .so 文件拷贝至 Forward/source/third_party/tensorflow/lib 目录下)
  • Keras HDF5 (从 Forward/source/third_party/hdf5 源码构建)

项目构建

使用 CMake 进行构建生成 Makefiles 或者 Visual Studio 项目。根据使用目的,Forward 可构建成适用于不同框架的库,如 Fwd-Torch、Fwd-Python-Torch、Fwd-Tf、Fwd-Python-Tf、Fwd-Keras、Fwd-Python-Keras、Fwd-Onnx 和 Fwd-Python-Onnx。

以 Linux 平台构建 Fwd-Tf 为例,

步骤一:克隆项目

1 git clone https://github.com/Tencent/Forward.git

步骤二:下载 Tensorflow 1.15.0(仅在 Linux 平台使用 Tensorflow 框架推理时需要)

1 cd Forward/source/third_party/tensorflow/
2 wget https://github.com/neargye-forks/tensorflow/releases/download/v1.15.0/libtensorflow-cpu-linux-x86_64-1.15.0.tar.gz
3 tar -xvf libtensorflow-gpu-linux-x86_64-1.15.0.tar.gz

步骤三:创建 build 文件夹

1 cd ~/Forward/
2 rm -rf build
3 mkdir -p build
4 cd build/

步骤四:使用 cmake 生成构建关系,需指定 TensorRT_ROOT 安装路径

1 cmake ..  -DTensorRT_ROOT=<path_to_TensorRT> -DENABLE_TENSORFLOW=ON -DENABLE_UNIT_TESTS=ON

步骤五:使用 make 构建项目

1 make -j

步骤六:运行 unit_test 验证项目是否构建成功

cd bin/
./unit_test --gtest_filter=TestTfNodes.*

# 出现已下提示表示项目构建成
# [       OK ] TestTfNodes.ZeroPadding (347 ms)
# [----------] 22 tests from TestTfNodes (17555 ms total)

# [----------] Global test environment tear-down
# [==========] 22 tests from 1 test case ran. (17555 ms total)
# [  PASSED  ] 22 tests.

Logging 日志

Forward 使用 easylogging++ 作为日志功能,并使用 forward_log.conf 作为日志配置文件。

  • 若工作目录中存在 forward_log.conf 文件,Forward 将使用该配置文件,更多内容可参考 Using-configuration-file
  • 若工作目录中不存在 forward_log.conf 文件,Forward 将使用默认配置,并将日志记录到 logs/myeasylog.log 

forward_log.conf 文件配置样例

* GLOBAL:
  FORMAT               =  "[%level] %datetime %fbase(%line): %msg"
  FILENAME             =  "Forward.log"
  ENABLED              =  true
  TO_FILE              =  true
  TO_STANDARD_OUTPUT   =  true
  PERFORMANCE_TRACKING =  true
  MAX_LOG_FILE_SIZE    =  2097152 ## 2MB - Comment starts with two hashes (##)
  LOG_FLUSH_THRESHOLD  =  100 ## Flush after every 100 logs

模型和算子支持

当前 Forward 的模型与算子支持如下所示,如有需要添加更多支持的,欢迎联系添加 Issue 反馈。如需要自行扩展添加支持的,可参考 开源共建:扩展添加支持操作的流程

模型

算子

参考资料

  1. 推理流程构建过程
  2. 推理引擎使用方法
  3. 工具与测试
  4. 常见问题
浏览 11
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报