Violinplot (Michael Waskom)Seaborn利用了matplotlib,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。由于Seaborn是构建在matplotlib的基础上的,你需要了解matplotlib从而来调整Seaborn的默认参数。开发者: Michael Waskom更多资料:http://seaborn.pydata.org/index.html
3、ggplot
Small multiples (ŷhat)ggplot 基于R的一个作图包 ggplot2, 同时利用了源于 《图像语法》(The Grammar of Graphics)中的概念。ggplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图。比如你可以从轴开始,然后加上点,加上线,趋势线等等。虽然《图像语法》得到了“接近思维过程”的作图方法的好评,但是习惯了matplotlib的用户可能需要一些时间来适应这个新思维方式。ggplot的作者提到 ggplot 并不适用于制作非常个性化的图像。它为了操作的简洁而牺牲了图像复杂度。ggplot is tightly integrated with pandas, so it’s best to store your data in a DataFrame when using ggplot.ggplot跟pandas的整合度非常高,所以当你使用它的时候,最好将你的数据读成 DataFrame。开发者: ŷhat更多资料:http://ggplot.yhathq.com/
4、Bokeh
Interactive weather statistics for three cities (Continuum Analytics)跟ggplot一样, Bokeh 也是基于《图形语法》的概念。但是跟ggplot不一样的是,它完全基于Python而不是从R引用过来的。它的长处在于它能用于制作可交互,可直接用于网络的图表。图表可以输出为JSON对象,HTML文档或者可交互的网络应用。Boken也支持数据流和实时数据。Bokeh为不同的用户提供了三种控制水平。最高的控制水平用于快速制图,主要用于制作常用图像, 例如柱状图,盒状图,直方图。中等控制水平跟matplotlib一样允许你控制图像的基本元素(例如分布图中的点)。最低的控制水平主要面向开发人员和软件工程师。它没有默认值,你得定义图表的每一个元素。开发者: Continuum Analytics更多资料:https://docs.bokeh.org/en/latest/
Chart grid with consistent scales (Christopher Groskopf) Leather的最佳定义来自它的作者 Christopher Groskopf。“Leather 适用于现在就需要一个图表并且对图表是不是完美并不在乎的人。”它可以用于所以的数据类型然后生成SVG图像,这样在你调整图像大小的时候就不会损失图像质量。开发者: Christopher Groskopf更多资料:https://leather.readthedocs.io/en/latest/index.html