用 Python 来实现 RSA 加解密

共 851字,需浏览 2分钟

 ·

2022-01-26 13:39

昨天看到一篇英文文章[1],展示了如何用 Python 来实现 RSA 算法,代码的逻辑与前文一文搞懂 RSA 算法一样,不太熟悉 RSA 的朋友可以看一下一文搞懂 RSA 算法,里面对什么是 RSA,RSA 的数学原理进行了说明,并举了一个简单的例子,可以说是全知乎最容易读懂 RSA 的文章了(这话来自读者评论),要是看不懂,你加我微信「somenzz」交流一下。

这篇英文提供的代码我运行了下,发现不能加密中文,于是就修改了下加解密的函数,让其支持中文加解密。今天的文章就分享一下如何用 Python 来实现 RSA 加解密的这一过程,帮助你建立 RSA 的直观认识,代码里的随机素数生成算法,也值得我们学习。

0、效果演示

咱们先看下效果。

原文:“有内鬼,终止交易”

密文,根本无法破解:

解密之后:

完整代码公众号「Python七号」回复「rsa」获取。

1、密钥对的生成

思路:

1)随机找两个质数(素数) p 和 q,p 与 q 越大,越安全,这里选择 1024 位的质数:

p = genprime(1024)
q = genprime(1024)

genprime() 函数的实现过程先不说。

2)计算他们的乘积 n = p * q 及 欧拉函数 lambda_n。

n = p * q
lambda_n = (p - 1) * (q - 1)

3)随机选择一个整数 e,条件是 1 < e < lambda_n,且 e 与 lambda_n 互质。比如选择 35537,35537 只有 16 位,必然小于 lambda_n。

e = 35537

4)找到一个整数 d,可以使得 e * d 除以 lambda_n 的余数为 1,并返回密钥对。

d = eucalg(e, lambda_n)[0]
if d < 0: d += lambda_n
return (d, n), (e, n)

eucalg 函数的实现放后面说。

至此,密钥对的生成的函数如下:

def create_keys():
 p = genprime(1024)
 q = genprime(1024)
 n = p * q
 lambda_n = (p - 1) * (q - 1)
 e = 35537
 d = eucalg(e, lambda_n)[0]
 if d < 0: d += lambda_n
 return (d, n), (e, n)

2、加解密的实现

加密和解密的过程是一样的,公钥加密,私钥解密,反过来也可以,私钥加密,公钥解密,只不过前者我们叫加密,后者我们叫签名。

具体的函数实现如下:


def encrypt_data(data,key):
    e_data = []
    for d in data:
       e = modpow(d, key[0], key[1]) 
       e_data.append(e)
    return e_data

## 加密和解密的逻辑完全一样
decrypt_data = encrypt_data

这里面用到了 modpow 函数,它用来计算公式 b^e % n = r 的。

  • 如果是加密过程,那么 b 是明文,(n,e)为公钥,r 为密文。
  • 如果是解密过程,那么 b 是密文,(n,d)为私钥,r 为名文。

modpow 的定义如下:

def modpow(b, e, n):
 # find length of e in bits
 tst = 1
 siz = 0
 while e >= tst:
  tst <<= 1
  siz += 1
 siz -= 1
 # calculate the result
 r = 1
 for i in range(siz, -1-1):
  r = (r * r) % n
  if (e >> i) & 1: r = (r * b) % n
 return r

3、随机质数的生成函数

随机质数的生成函数,其中用到了矩阵乘法和斐波那契数列,可见数学对于算法的重要性。

# matrix multiplication
def sqmatrixmul(m1, m2, w, mod):
 mr = [[0 for j in range(w)] for i in range(w)]
 for i in range(w):
  for j in range(w):
   for k in range(w):
    mr[i][j] = (mr[i][j] + m1[i][k] * m2[k][j]) % mod
 return mr

# fibonacci calculator
def fib(x, mod):
 if x < 3return 1
 x -= 2
 # find length of e in bits
 tst = 1
 siz = 0
 while x >= tst:
  tst <<= 1
  siz += 1
 siz -= 1
 # calculate the matrix
 fm = [
  # function matrix
  [01],
  [11]
 ]
 rm = [
  # result matrix
  # (identity)
  [10],
  [01]
 ]
 for i in range(siz, -1-1):
  rm = sqmatrixmul(rm, rm, 2, mod)
  if (x >> i) & 1:
   rm = sqmatrixmul(rm, fm, 2, mod)

 # second row of resulting vector is result
 return (rm[1][0] + rm[1][1]) % mod

def genprime(siz):
 while True:
  num = (1 << (siz - 1)) + secrets.randbits(siz - 1) - 10;
  # num must be 3 or 7 (mod 10)
  num -= num % 10
  num += 3 # 3 (mod 10)
  # heuristic test
  if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0:
   return num
  num += 5 # 7 (mod 10)
  # heuristic test
  if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0:
   return num

4、eucalg 函数的实现

函数的本质在于求下面二元一次方程的解:

e * x - lambda_n * y =1

具体代码:

def eucalg(a, b):
 # make a the bigger one and b the lesser one
 swapped = False
 if a < b:
  a, b = b, a
  swapped = True
 # ca and cb store current a and b in form of
 # coefficients with initial a and b
 # a' = ca[0] * a + ca[1] * b
 # b' = cb[0] * a + cb[1] * b
 ca = (10)
 cb = (01)
 while b != 0:
  # k denotes how many times number b
  # can be substracted from a
  k = a // b
  # swap a and b so b is always the lesser one
  a, b, ca, cb = b, a-b*k, cb, (ca[0]-k*cb[0], ca[1]-k*cb[1])
 if swapped:
  return (ca[1], ca[0])
 else:
  return ca

5、测试

test.py 脚本使用方法:

1、生成密钥

python test.py make-keys rsakey

公钥保存在 rsakey.pub 中, 私钥保存在 rsakey.priv 中

2、对文件内容加密

假如有文件 明文.txt:

python test.py encrypt 明文.txt from rsakey to 密文.txt

将生成 密文.txt

3、 对文件内容解密

假如有文件 密文.txt:

python test.py decrypt 密文.txt as rsakey to 解密后.txt

将生成 解密后.txt

最后的话

本文分享了 RSA 算法的 Python 的简单实现,可以帮助理解 RSA 算法,获取完整代码关注公众号「Python七号」,回复「rsa」获取。

留言交流

扫码关注

参考资料

[1]

英文文章: https://coderoasis.com/implementing-rsa-in-python-from-scratch-part-2/


浏览 62
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报