Redis 实现限流的三种方式
第一种:基于Redis的setnx的操作 第二种:基于Redis的数据结构zset 第三种:基于Redis的令牌桶算法
第一种:基于Redis的setnx的操作
第二种:基于Redis的数据结构zset
其实限流涉及的最主要的就是滑动窗口,上面也提到1-10怎么变成2-11。其实也就是起始值和末端值都各+1即可。
而我们如果用Redis的list数据结构可以轻而易举的实现该功能
我们可以将请求打造成一个zset数组,当每一次请求进来的时候,value保持唯一,可以用UUID生成,而score可以用当前时间戳表示,因为score我们可以用来计算当前时间戳之内有多少的请求数量。而zset数据结构也提供了range方法让我们可以很轻易的获取到2个时间戳内有多少请求
代码如下
public Response limitFlow(){
Long currentTime = new Date().getTime();
System.out.println(currentTime);
if(redisTemplate.hasKey("limit")) {
Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime - intervalTime, currentTime).size(); // intervalTime是限流的时间
System.out.println(count);
if (count != null && count > 5) {
return Response.ok("每分钟最多只能访问5次");
}
}
redisTemplate.opsForZSet().add("limit",UUID.randomUUID().toString(),currentTime);
return Response.ok("访问成功");
}
通过上述代码可以做到滑动窗口的效果,并且能保证每N秒内至多M个请求,缺点就是zset的数据结构会越来越大。实现方式相对也是比较简单的。
第三种:基于Redis的令牌桶算法
提到限流就不得不提到令牌桶算法了。
令牌桶算法提及到输入速率和输出速率,当输出速率大于输入速率,那么就是超出流量限制了。
也就是说我们每访问一次请求的时候,可以从Redis中获取一个令牌,如果拿到令牌了,那就说明没超出限制,而如果拿不到,则结果相反。
依靠上述的思想,我们可以结合Redis的List数据结构很轻易的做到这样的代码,只是简单实现
依靠List的leftPop来获取令牌
// 输出令牌
public Response limitFlow2(Long id){
Object result = redisTemplate.opsForList().leftPop("limit_list");
if(result == null){
return Response.ok("当前令牌桶中无令牌");
}
return Response.ok(articleDescription2);
}
// 10S的速率往令牌桶中添加UUID,只为保证唯一性
@Scheduled(fixedDelay = 10_000,initialDelay = 0)
public void setIntervalTimeTask(){
redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString());
}
作者:Leonis丶L
来源:blog.csdn.net/lmx125254/article/details/90700118
版权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢! 浪尖微信 langjianliaodashuju
评论