简简单单用OpenCV让一只小猫咪变成奶凶奶凶的科技猫
共 12072字,需浏览 25分钟
·
2021-03-08 16:24
点击上方“AI算法与图像处理”,选择加"星标"或“置顶”
重磅干货,第一时间送达
导读
Hi,大家好,今天给各位读者分享一个比较酷炫的特效。
下面将会一步一步演示,并 详细分析内部的原因,会尽量用清晰直观的方式,让大家去理解,以收获更多的知识!
效果展示
首先看一下目标效果:
将一只可爱的小猫猫变成一只充满科技感奶凶的猫猫!
原图
效果图
思路详解 & 代码实现
Gabor 滤波器特征检测
对特征信息进行重复赋值
使用滑动条调整参数
Gabor 变换是一种短时加窗Fourier变换(简单理解起来就是在特定时间窗内做Fourier变换),是短时傅里叶变换中窗函数取为高斯函数时的一种特殊情况。因此,Gabor滤波器可以在频域上不同尺度、不同方向上提取相关的特征。另外,Gabor函数与人眼的作用相仿,所以经常用作纹理识别上,并取得了较好的效果。
在二维空间中,使用一个三角函数(a)(如正弦函数)与一个高斯函数(b)叠加,我们得到了一个Gabor滤波器(c)。如下图所示:
原理参考:https://www.cnblogs.com/wojianxin/p/12574089.html
https://blog.csdn.net/lhanchao/article/details/55006663
在本文中设置了 16 个不同的滤波器角度,分别检测不同角度
经过每个滤波器处理之后的效果(高能,把我看晕了):
# 创建滤波器(们)
def build_filters(a=31):
filters = []
ksize = a
print(ksize)
# 此处创建16个滤波器,只有getGaborKernel的第三个参数theta不同。
for theta in np.arange(0, np.pi, np.pi / 16):
kern = cv.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv.CV_32F)
kern /= 1.5*kern.sum()
filters.append(kern)
import numpy as np
a =[-5,-4,-3,-2,-1,0,1,2,3,4,5]
0) np.maximum(a,
# 输出 array([0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5])
np.maximum 对参数中对应位置的值进行比较,输出较大的值作为最终的结果。
在曲线上表现形式如上图所示,那么对于一张图片又是如何呢?
曲线都是一维的情况,当我们这里处理的是图片时,此时numpy 处理的是三个通道的值,原理还是一样对应位置进行比较。
更加具体的来说,一张图片可以看成是 三通道的, RGB, 为了便于理解,我们假设取其中一个通道 例如 R 通道的值进行比较,那么最终的输出结果,一定是所有结果处理完(不同参数)之后 ,R 通道值最大的结果,同理可以对 G 通道和 B 通道也是 如此,因此最终的输出结果显示的颜色会比较鲜艳,比较亮。
# 重新赋值过程
# 将不同滤波器处理的结果,经过 np.maximum 输出每个位置最亮的值
def process(img, filters):
# zeros_like:返回和输入大小相同,类型相同,用0填满的数组
accum = np.zeros_like(img)
for kern in filters:
fimg = cv.filter2D(img, cv.CV_8UC3, kern)
# maximum:逐位比较取其大
np.maximum(accum, fimg, accum)
return accum
知识点汇总和代码分享
本文简单介绍了 Gabor 滤波器,通过设置不同的滤波器参数来得到我们希望检测的特征,然后对特征进一步出来,展示出来较酷炫的效果。在代码中,我们还会用到 滑动条 以便更加轻松的调节参数。
具体的代码,在下面的内容中分享
后续会将代码和素材更新到项目中:https://github.com/DWCTOD/AI_study 主要需要下面两个代码
from __future__ import print_function
import numpy as np
import cv2 as cv
from multiprocessing.pool import ThreadPool
# 创建滤波器(们)
def build_filters(a=31):
filters = []
ksize = a
print(ksize)
# 此处创建16个滤波器,只有getGaborKernel的第三个参数theta不同。
for theta in np.arange(0, np.pi, np.pi / 16):
kern = cv.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv.CV_32F)
kern /= 1.5*kern.sum()
filters.append(kern)
return filters
# 单线程处理
def process(img, filters):
# zeros_like:返回和输入大小相同,类型相同,用0填满的数组
accum = np.zeros_like(img)
for kern in filters:
fimg = cv.filter2D(img, cv.CV_8UC3, kern)
#cv.imshow('fimg',fimg)
#cv.waitKey(0)
# maximum:逐位比较取其大
np.maximum(accum, fimg, accum)
return accum
# 多线程处理,threadn = 8
def process_threaded(img, filters, threadn = 8):
accum = np.zeros_like(img)
def f(kern):
return cv.filter2D(img, cv.CV_8UC3, kern)
pool = ThreadPool(processes=threadn)
for fimg in pool.imap_unordered(f, filters):
np.maximum(accum, fimg, accum)
return accum
def nothing(x):
pass
if __name__ == '__main__':
import sys
from common import Timer
# 输出文件开头由''' '''包含的注释内容
print(__doc__)
try:
img_fn = sys.argv[1]
except:
img_fn = 'cat1.jpg'
img = cv.imread(img_fn)
# 判断图片是否读取成功
if img is None:
print('Failed to load image file:', img_fn)
sys.exit(1)
# 增加滑动条
cv.namedWindow('result')
cv.createTrackbar('a', 'result', 0, 60, nothing)
tmp =-1
while True:
a = cv.getTrackbarPos('a', 'result')
print("a:",a)
if a == tmp:
cv.imshow('result', res2)
if cv.waitKey(1) == 27:
break
if cv.waitKey(1) == ord('s'):
cv.imwrite(str(a)+'.jpg', res2)
continue
tmp = a
filters = build_filters(a)
with Timer('running single-threaded'):
res1 = process(img, filters)
with Timer('running multi-threaded'):
res2 = process_threaded(img, filters)
print('res1 == res2: ', (res1 == res2).all())
# cv.imshow('img', img)
cv.imshow('result', res2)
if cv.waitKey(1) == 27:
break
# cv.destroyAllWindows()
还需要将下面的代码保存为 common.py
#!/usr/bin/env python
'''
This module contains some common routines used by other samples.
'''
# Python 2/3 compatibility
from __future__ import print_function
import sys
PY3 = sys.version_info[0] == 3
if PY3:
from functools import reduce
import numpy as np
import cv2 as cv
# built-in modules
import os
import itertools as it
from contextlib import contextmanager
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
class Bunch(object):
def __init__(self, **kw):
self.__dict__.update(kw)
def __str__(self):
return str(self.__dict__)
def splitfn(fn):
path, fn = os.path.split(fn)
name, ext = os.path.splitext(fn)
return path, name, ext
def anorm2(a):
return (a*a).sum(-1)
def anorm(a):
return np.sqrt( anorm2(a) )
def homotrans(H, x, y):
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
return xs/s, ys/s
def to_rect(a):
a = np.ravel(a)
if len(a) == 2:
a = (0, 0, a[0], a[1])
return np.array(a, np.float64).reshape(2, 2)
def rect2rect_mtx(src, dst):
src, dst = to_rect(src), to_rect(dst)
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
tx, ty = dst[0] - src[0] * (cx, cy)
M = np.float64([[ cx, 0, tx],
[ 0, cy, ty],
[ 0, 0, 1]])
return M
def lookat(eye, target, up = (0, 0, 1)):
fwd = np.asarray(target, np.float64) - eye
fwd /= anorm(fwd)
right = np.cross(fwd, up)
right /= anorm(right)
down = np.cross(fwd, right)
R = np.float64([right, down, fwd])
tvec = -np.dot(R, eye)
return R, tvec
def mtx2rvec(R):
w, u, vt = cv.SVDecomp(R - np.eye(3))
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
c = np.dot(vt[0], p)
s = np.dot(vt[1], p)
axis = np.cross(vt[0], vt[1])
return axis * np.arctan2(s, c)
def draw_str(dst, target, s):
x, y = target
cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA)
cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)
class Sketcher:
def __init__(self, windowname, dests, colors_func):
self.prev_pt = None
self.windowname = windowname
self.dests = dests
self.colors_func = colors_func
self.dirty = False
self.show()
cv.setMouseCallback(self.windowname, self.on_mouse)
def show(self):
cv.imshow(self.windowname, self.dests[0])
def on_mouse(self, event, x, y, flags, param):
pt = (x, y)
if event == cv.EVENT_LBUTTONDOWN:
self.prev_pt = pt
elif event == cv.EVENT_LBUTTONUP:
self.prev_pt = None
if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON:
for dst, color in zip(self.dests, self.colors_func()):
cv.line(dst, self.prev_pt, pt, color, 5)
self.dirty = True
self.prev_pt = pt
self.show()
# palette data from matplotlib/_cm.py
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
(1, 0.5, 0.5)),
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
(0.91,0,0), (1, 0, 0)),
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
(1, 0, 0))}
cmap_data = { 'jet' : _jet_data }
def make_cmap(name, n=256):
data = cmap_data[name]
xs = np.linspace(0.0, 1.0, n)
channels = []
eps = 1e-6
for ch_name in ['blue', 'green', 'red']:
ch_data = data[ch_name]
xp, yp = [], []
for x, y1, y2 in ch_data:
xp += [x, x+eps]
yp += [y1, y2]
ch = np.interp(xs, xp, yp)
channels.append(ch)
return np.uint8(np.array(channels).T*255)
def nothing(*arg, **kw):
pass
def clock():
return cv.getTickCount() / cv.getTickFrequency()
def Timer(msg):
print(msg, '...',)
start = clock()
try:
yield
finally:
print("%.2f ms" % ((clock()-start)*1000))
class StatValue:
def __init__(self, smooth_coef = 0.5):
self.value = None
self.smooth_coef = smooth_coef
def update(self, v):
if self.value is None:
self.value = v
else:
c = self.smooth_coef
self.value = c * self.value + (1.0-c) * v
class RectSelector:
def __init__(self, win, callback):
self.win = win
self.callback = callback
cv.setMouseCallback(win, self.onmouse)
self.drag_start = None
self.drag_rect = None
def onmouse(self, event, x, y, flags, param):
x, y = np.int16([x, y]) # BUG
if event == cv.EVENT_LBUTTONDOWN:
self.drag_start = (x, y)
return
if self.drag_start:
if flags & cv.EVENT_FLAG_LBUTTON:
xo, yo = self.drag_start
x0, y0 = np.minimum([xo, yo], [x, y])
x1, y1 = np.maximum([xo, yo], [x, y])
self.drag_rect = None
if x1-x0 > 0 and y1-y0 > 0:
self.drag_rect = (x0, y0, x1, y1)
else:
rect = self.drag_rect
self.drag_start = None
self.drag_rect = None
if rect:
self.callback(rect)
def draw(self, vis):
if not self.drag_rect:
return False
x0, y0, x1, y1 = self.drag_rect
cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
return True
def dragging(self):
return self.drag_rect is not None
def grouper(n, iterable, fillvalue=None):
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
args = [iter(iterable)] * n
if PY3:
output = it.zip_longest(fillvalue=fillvalue, *args)
else:
output = it.izip_longest(fillvalue=fillvalue, *args)
return output
def mosaic(w, imgs):
'''Make a grid from images.
w -- number of grid columns
imgs -- images (must have same size and format)
'''
imgs = iter(imgs)
if PY3:
img0 = next(imgs)
else:
img0 = imgs.next()
pad = np.zeros_like(img0)
imgs = it.chain([img0], imgs)
rows = grouper(w, imgs, pad)
return np.vstack(map(np.hstack, rows))
def getsize(img):
h, w = img.shape[:2]
return w, h
def mdot(*args):
return reduce(np.dot, args)
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
for kp in keypoints:
x, y = kp.pt
cv.circle(vis, (int(x), int(y)), 2, color)
最后
本文详细分析如何实现一直科技猫,同样可以用于你想要测试的图片素材上
感谢看到这里的小伙伴,希望能给个三连支持一下,周末还在努力的打工人!下期见
参考文献:
https://blog.csdn.net/lhanchao/article/details/55006663
http://www.aas.net.cn/fileZDHXB/journal/article/zdhxb/2007/5/PDF/070502.pdf
https://blog.csdn.net/lanchunhui/article/details/52700895
https://zhuanlan.zhihu.com/p/33311267
个人微信(如果没有备注不拉群!) 请注明:地区+学校/企业+研究方向+昵称
下载1:何恺明顶会分享
在「AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析
下载2:终身受益的编程指南:Google编程风格指南
在「AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!
下载3 CVPR2020 在「AI算法与图像处理」公众号后台回复:CVPR2020,即可下载1467篇CVPR 2020论文
觉得不错就点亮在看吧