亿级流量架构,服务器如何扩容?写得太好了!
点击关注下方公众号,架构师全套资料 都在这里
为什么要扩容
说人话就是, 无论如何优化性能,能达到的最大值是一定的,对于一个用户量大的应用,可以对服务器进行各种优化,诸如限流、资源隔离,但是上限还是在那里,这时候就应该改变我们的硬件,例如使用更强的CPU、更大的内存,在前文中举了一个学生食堂打饭的例子,如果学生多了,可以通过令牌桶算法优先给高三学生令牌打饭,但是如果高三的学生还是很多呢?那就只有增加窗口或者食堂的数量,也就是硬件上的扩容。
扩容策略
整机硬件
组件
组件包含:
cpu
Intel、Amd ,参考频率、线程数等
网卡
百兆->千兆 -> 万兆
内存
ECC校验
磁盘
SCSI HDD(机械)、HHD(混合)、SATA SSD、PCI-e SSD、 MVMe SSD。想成为架构师,这份架构师图谱建议看看,少走弯路。
AKF拆分原则
对于一个应用,如果单机不足以支撑服务请求,那么可以建立诸如主主、主从等模式的集群:
这个叫AKF原则X轴扩展,目的是将请求分流在多台机器上,但是多台机器中间要解决数据同步性的问题,越多的机器数据不同步的可能性越大,这也就意味着没法无限整体复制扩容。
所以可以整理搜集服务器内热点的业务请求,将业务分离出来,只对热点业务进行扩容,这就是AKF原则的Y轴拆分:
拆分扩容后存在的问题
数据共享问题 所有的服务之间数据如何共享同步,这是一个需要考虑的问题,微服务架构中,数据不可能只有一份,没法避免机器损坏等原因造成的数据丢失,多份数据之间如何同步?目前可供参考的解决思路是建立数据中心、搭建数据库集群。 接口调用问题 不同的服务器之间进行调用遵循远程调用协议RPC JAVA RMI:Java远程方法调用,即Java RMI(Java Remote Method Invocation)是Java编程语言里,一种用于实现远程过程调用的应用程序编程接口。它使客户机上运行的程序可以调用远程服务器上的对象。
dubbo:提供了面向接口代理的高性能RPC调用
持久化数据雪崩问题 数据库分库分表 资源隔离 缓存设定数据持久化策略
高并发问题
缓存:诸如缓存击穿、穿透、雪崩等
数据闭环:为了便于理解,举个例子,对于淘宝而言,有网页版、IOS版、安卓版、还有什么一淘等等,虽然客户端不一样,但是展示的商品信息是相同的,也就是一件商品,无论是哪个端用的数据是一样的,需要一套方案来解决并发下根据相同数据在不同端进行不同展示的问题,这就叫数据闭环。
数据一致性问题
这是一个难点,大意就是多个服务器之间数据如何保证一致性,同样的商品在不同客户端服务端端价格应该是一样的, 通常使用分布式锁。
数据库扩容:集群
分布式ID
分布式ID要求
面对分布式ID,需要满足下面的要求:
全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
上述123对应三类不同的场景,但是3和4的需求是互斥的,也就是无法使用同一个方案满足。另外,搜索公众号互联网架构师后台回复“9”,获取一份惊喜礼包。
除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个与数据有关的动作都无法执行,会带来一场灾难。由此总结下一个ID生成系统最少应该做到如下几点:
平均延迟和TP999延迟都要尽可能低; 可用性5个9(这是美团的要求,有些企业例如阿里要求6个9); 高QPS。
分布式ID生成策略
目前业界常用的ID生成策略有很多,例如UUID、雪花生成算法、Redis、Zookeeper等,这儿只简单讲讲UUID以及Snowflake,后面要开篇详谈。
UUID生成算法
UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000
,到目前为止业界一共有5种方式生成UUID。
优点:
性能非常高:本地生成,没有网络消耗。
缺点:
不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:
① MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。
All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a secondary index contains the primary key columns for the row, as well as the columns specified for the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.
② 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变 动,严重影响性能。
雪花生成算法
这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:
41-bit的时间可以表示(1L<<41)/(1000L360024*365)=69年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。
12个自增序列号可以表示212212个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。
这种方式的优缺点是:
优点:
毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。 可以根据自身业务特性分配bit位,非常灵活。
缺点:
强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
弹性扩容
说人话,就是让集群根据计划在某一段时间自动对资源进行扩容,并在设置的计划还原时间时释放资源。这样能解决规律性的资源峰谷需求,达到充分合理利用资源的目的。但是弹性扩容有一些问题: