TensorFlow和Pytorch中的音频增强
数据派THU
共 5093字,需浏览 11分钟
·
2022-04-10 08:32
来源:Deephub Imba 本文约2100字,建议阅读9分钟
本文将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。
直接音频增强
import librosa
import tensorflow as tf
def build_artificial_dataset(num_samples: int):
data = []
sampling_rates = []
for i in range(num_samples):
y, sr = librosa.load(librosa.ex('nutcracker'))
data.append(y)
sampling_rates.append(sr)
features_dataset = tf.data.Dataset.from_tensor_slices(data)
labels_dataset = tf.data.Dataset.from_tensor_slices(sampling_rates)
dataset = tf.data.Dataset.zip((features_dataset, labels_dataset))
return dataset
ds = build_artificial_dataset(10)
from audiomentations import Compose, AddGaussianNoise, PitchShift, Shift
augmentations_pipeline = Compose(
[
AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),
PitchShift(min_semitones=-4, max_semitones=4, p=0.5),
Shift(min_fraction=-0.5, max_fraction=0.5, p=0.5),
]
)
def apply_pipeline(y, sr):
shifted = augmentations_pipeline(y, sr)
return shifted
@tf.function
def tf_apply_pipeline(feature, sr, ):
"""
Applies the augmentation pipeline to audio files
@param y: audio data
@param sr: sampling rate
@return: augmented audio data
"""
augmented_feature = tf.numpy_function(
apply_pipeline, inp=[feature, sr], Tout=tf.float32, name="apply_pipeline"
)
return augmented_feature, sr
def augment_audio_dataset(dataset: tf.data.Dataset):
dataset = dataset.map(tf_apply_pipeline)
return dataset
ds = augment_audio_dataset(ds)
ds = ds.map(lambda y, sr: (tf.expand_dims(y, axis=-1), sr))
前向传播期间进行音频增强
我们可以在例如超参数搜索期间优化频谱图生成的参数,从而无需重复将音频生成频谱图。
转换直接在 GPU 上进行,因此在原始转换速度和设备内存放置方面都会更快。
import kapre
input_layer = tf.keras.layers.Input(shape=input_shape, dtype=tf.float32)
melspectrogram = kapre.composed.get_melspectrogram_layer(
n_fft=1024,
return_decibel=True,
n_mels=256,
input_data_format='channels_last',
output_data_format='channels_last')(input_layer)
from spec_augment import SpecAugment
spec_augment = SpecAugment(freq_mask_param=27, # F in paper
time_mask_param=100, # T in paper
n_freq_mask=1, # mF in paper
n_time_mask=2, # mT in paper
mask_value=-1, )(melspectrogram)
spec_augment = tf.keras.applications.resnet_v2.preprocess_input(spec_augment)
core = tf.keras.applications.resnet_v2.ResNet152V2(
input_tensor=spec_augment,
include_top=False,
pooling="avg",
weights=None,
)
core = core.output
output = tf.keras.layers.Dense(units=10)(core)
resnet_model = tf.keras.Model(inputs=[input_layer], outputs=[output], name="audio_model")
torchaudio
spec = get_spectrogram(power=None)
strech = T.TimeStretch()
rate = 1.2
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)
plot_spectrogram(spec[0].abs(), title="Original", aspect='equal', xmax=304)
rate = 0.9
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along time axis")
FrequencyMasking:
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along frequency axis")
总结
引用
[1] Park et al., Specaugment: A simple data augmentation method for automatic speech recognition, 2019, Proc. Interspeech 2019
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
编辑:王菁
评论