使用 guava-retrying 实现灵活的重试机制

共 2662字,需浏览 6分钟

 ·

2020-12-16 21:55

我们的后端业务系统可能会出现接口调用失败、网络拥塞超时、任务执行失败、系统错误等异常情况,需要进行重试操作。但某些场景下我们对重试有特殊要求,比如延迟重试、降频重试等,此时自己编写重试代码会很繁琐,在 Java 中,可以使用 guava-retrying 帮我们实现灵活的重试机制。
guava-retrying 简介
guava-retrying 是一个线程安全的 Java 重试类库,提供了一种通用方法去处理任意需要重试的代码,可以方便灵活地控制重试次数、重试时机、重试频率、停止时机等,并具有异常处理功能。
GitHub地址:https://github.com/rholder/guava-retrying
有意思的是,这个项目最初源于 Jean-Baptiste Nizet 在 guava 仓库下的评论。

guava-retrying 入门

下面通过一个场景帮助大家快速入门 guava-retrying,再具体讲解其更多用法。
作者在 GitHub 提供了入门代码,先通过 maven 或 gradle 引入:
maven引入代码:
<dependency><groupId>com.github.rholdergroupId><artifactId>guava-retryingartifactId><version>2.0.0version>dependency>
gradle引入代码:
compile "com.github.rholder:guava-retrying:2.0.0"
假定我们需要调用一个qps限制很低的第三方接口,如果调用失败,需要依次在失败后的第10s、30s、60s进行降频重试。
如果不使用框架,实现逻辑大致如下:
// 调用接口boolean result;AtomicInteger atomicInteger = new AtomicInteger(0);int sleepNum = 10000;
while(!result && atomicInteger.get() < 4) { atomicInteger.incrementAndGet(); result = thirdApi.invoke(); Thread.sleep(sleepNum); sleepNum += sleepNum * atomicInteger.get();}
虽然看起来代码行数并不多,只需要自己定义计数器、计算休眠时间等,但是再考虑到异常处理、异步等情况,重试逻辑的代码占整体代码的比重太大了(真正的业务逻辑只有 thirdApi.invoke 对么?)。如果业务中多处需要重试,还要反复编写类似的代码,而这不应该是开发者关心的。
guava-retrying 为我们封装了一套很好的通用重试方法,来试下用它实现上述逻辑:
Callable<Boolean> callable = () -> {return thirdApi.invoke(); // 业务逻辑};
// 定义重试器Retryer<Boolean> retryer = RetryerBuilder.<Boolean>newBuilder() .retryIfResult(Predicates.<Boolean>isNull()) // 如果结果为空则重试 .retryIfExceptionOfType(IOException.class) // 发生IO异常则重试 .retryIfRuntimeException() // 发生运行时异常则重试 .withWaitStrategy(WaitStrategies.incrementingWait(10, TimeUnit.SECONDS, 10, TimeUnit.SECONDS)) // 等待 .withStopStrategy(StopStrategies.stopAfterAttempt(4)) // 允许执行4次(首次执行 + 最多重试3次) .build();
try { retryer.call(callable); // 执行} catch (RetryException | ExecutionException e) { // 重试次数超过阈值或被强制中断 e.printStackTrace();}
分析上述代码:
1. 首先定义了一个 Callable 任务,其中执行我们需要重试的业务逻辑。
2. 通过 RetryerBuilder 构造重试器,构造包含如下部分:
  • 重试条件 retryIfResult、retryIfExceptionOfType、retryIfRuntimeException
  • 重试等待策略(延迟)withWaitStrategy
  • 重试停止策略 withStopStrategy
  • 阻塞策略、超时限制、注册重试监听器(上述代码未使用)
3. 通过 retryer.call 执行任务
4. 当重试次数超过设定值或者被强制中断时,会抛出异常,需要捕获处理
通过上述代码我们定义了一个重试器来实现降频重试机制。显然这种方式相较自己实现重试来说具有如下优点:
1. 对代码的侵入性更小
2. 更直观,改动方便
3. 可复用重试器至多个任务(代码段)
RetryerBuilder 方法介绍
RetryerBuilder 用于构造重试器,是整个 guava-retrying 库的核心,决定了重试的行为,下面详细介绍 RetryerBuilder 的方法。
通过 newBuilder 方法获取 RetryerBuilder 实例,通过 build 方法构造 Retryer:
RetryerBuilder<V> newBuilder()Retryer<V> build()
可以通过下面的方法改变重试器的行为。

重试条件

1. 根据执行结果判断是否重试 retryIfResult
RetryerBuilder<V> retryIfResult(@Nonnull Predicate<V> resultPredicate)
2. 发生异常时重试
// 发生任何异常都重试retryIfException()// 发生 Runtime 异常都重试RetryerBuilder retryIfRuntimeException()// 发生指定 type 异常时重试RetryerBuilder retryIfExceptionOfType(@Nonnull Classextends Throwable> exceptionClass)// 匹配到指定类型异常时重试RetryerBuilder retryIfException(@Nonnull Predicate exceptionPredicate)
等待策略
等待策略可以控制重试的时间间隔,通过 withWaitStrategy 方法注册等待策略:
RetryerBuilder<V> withWaitStrategy(@Nonnull WaitStrategy waitStrategy) throws IllegalStateException
WaitStrategy 是等待策略接口,可通过 WaitStrategies 的方法生成该接口的策略实现类,共有7种策略:
1. FixedWaitStrategy:固定等待时长策略,比如每次重试等待5s
// 参数:等待时间,时间单位WaitStrategy fixedWait(long sleepTime, @Nonnull TimeUnit timeUnit) throws IllegalStateException
2. RandomWaitStrategy:随机等待时长策略,每次重试等待指定区间的随机时长
// 参数:随机上限,时间单位WaitStrategy randomWait(long maximumTime, @Nonnull TimeUnit timeUnit)// 参数:随机下限,下限时间单位,随机上限,上限时间单位WaitStrategy randomWait(long minimumTime,                        @Nonnull TimeUnit minimumTimeUnit,long maximumTime,                        @Nonnull TimeUnit maximumTimeUnit)
3. IncrementingWaitStrategy:递增等待时长策略,指定初始等待值,然后重试间隔随次数等差递增,比如依次等待10s、30s、60s(递增值为10)
// 参数:初始等待时长,初始值时间单位,递增值,递增值时间单位WaitStrategy incrementingWait(long initialSleepTime,                              @Nonnull TimeUnit initialSleepTimeUnit,long increment,                              @Nonnull TimeUnit incrementTimeUnit)
4. ExponentialWaitStrategy:指数等待时长策略,指定初始值,然后每次重试间隔乘2(即间隔为2的幂次方),如依次等待 2s、6s、14s。可以设置最大等待时长,达到最大值后每次重试将等待最大时长。
// 无参数(默认初始值为1)WaitStrategy exponentialWait()// 参数:最大等待时长,最大等待时间单位(默认初始值为1)WaitStrategy exponentialWait(long maximumTime, @Nonnull TimeUnit maximumTimeUnit)// 参数:初始值,最大等待时长,最大等待时间单位WaitStrategy exponentialWait(long multiplier, long maximumTime, @Nonnull TimeUnit maximumTimeUnit)
5. FibonacciWaitStrategy :斐波那契等待时长策略,类似指数等待时长策略,间隔时长为斐波那契数列。
// 无参数(默认初始值为1)WaitStrategy fibonacciWait()// 参数:最大等待时长,最大等待时间单位(默认初始值为1)WaitStrategy fibonacciWait(long maximumTime, @Nonnull TimeUnit maximumTimeUnit)// 参数:最大等待时长,最大等待时间单位(默认初始值为1)WaitStrategy fibonacciWait(long multiplier, long maximumTime, @Nonnull TimeUnit maximumTimeUnit)
6. ExceptionWaitStrategy:异常时长等待策略,根据出现的异常类型决定等待的时长
// 参数:异常类型,计算等待时长的函数extends Throwable> WaitStrategy exceptionWait(@Nonnull Class exceptionClass,@Nonnull Function function)
7. CompositeWaitStrategy :复合时长等待策略,可以组合多个等待策略,基本可以满足所有等待时长的需求
// 参数:等待策略数组WaitStrategy join(WaitStrategy... waitStrategies)
阻塞策略
阻塞策略控制当前重试结束至下次重试开始前的行为,通过 withBlockStrategy 方法注册阻塞策略:
RetryerBuilder<V> withBlockStrategy(@Nonnull BlockStrategy blockStrategy) throws IllegalStateException
BlockStrategy 是等待策略接口,可通过 BlockStrategies 的方法生成实现类,默认只提供一种策略 ThreadSleepStrategy:
@Immutableprivate static class ThreadSleepStrategy implements BlockStrategy {
@Overridepublic void block(long sleepTime) throws InterruptedException { Thread.sleep(sleepTime); }}
很好理解,除了睡眠,阻塞着啥也不干。

停止策略

停止策略决定了何时停止重试,比如限制次数、时间等,通过 withStopStrategy 方法注册等待策略:
RetryerBuilder<V> withStopStrategy(@Nonnull StopStrategy stopStrategy) throws IllegalStateException
可通过 StopStrategies 的方法生成 StopStrategy 接口的策略实现类,共有3种策略:
1. NeverStopStrategy:永不停止,直到重试成功
2. StopAfterAttemptStrategy:指定最多重试次数,超过次数抛出 RetryException 异常
3. StopAfterDelayStrategy:指定最长重试时间,超时则中断当前任务执行且不再重试,并抛出 RetryException 异常

超时限制

通过 withAttemptTimeLimiter 方法为任务添加单次执行时间限制,超时则中断执行,继续重试。
RetryerBuilder<V> withAttemptTimeLimiter(@Nonnull AttemptTimeLimiter<V> attemptTimeLimiter)
默认提供了两种 AttemptTimeLimiter:
  1. NoAttemptTimeLimit:不限制执行时间
  2. FixedAttemptTimeLimit:限制执行时间为固定值

监听器

可以通过 withRetryListener 方法为重试器注册***,每次重试结束后,会按注册顺序依次回调 Listener 的 onRetry 方法,可在其中获取到当前执行的信息,比如重试次数等。
示例代码如下:
import com.github.rholder.retry.Attempt;import com.github.rholder.retry.RetryListener;
public class MyRetryListener<T> implements RetryListener {
@Overridepublic <T> void onRetry(Attempt<T> attempt) {// 第几次重试,(注意:第一次重试其实是第一次调用)System.out.print("[retry]time=" + attempt.getAttemptNumber());
// 距离第一次重试的延迟System.out.print(",delay=" + attempt.getDelaySinceFirstAttempt());
// 重试结果: 是异常终止, 还是正常返回System.out.print(",hasException=" + attempt.hasException());System.out.print(",hasResult=" + attempt.hasResult());
// 是什么原因导致异常if (attempt.hasException()) {System.out.print(",causeBy=" + attempt.getExceptionCause().toString()); } else {// 正常返回时的结果System.out.print(",result=" + attempt.getResult()); } }}
看下原理
顾名思义,guava-retrying 依赖 guava 库,如作者所说,源码中大量依赖 guava 的 Predicates(断言)来判断是否继续重试。
通过方法、对象名也可以看出,该库主要使用了策略模式、构造器模式和观察者模式(Listener),对调用方非常友好。
从哪儿开始执行任务就从哪儿开始看,直接打开 Retryer 类的 call 方法:
public V call(Callable callable) throws ExecutionException, RetryException {long startTime = System.nanoTime(); // 1. 记录开始时间,用于后续的时间计算for (int attemptNumber = 1; ; attemptNumber++) {        Attempt attempt;try {            V result = attemptTimeLimiter.call(callable); // 2. 执行callable任务,得到attempt            attempt = new ResultAttempt(result, attemptNumber, TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTime));        } catch (Throwable t) {            attempt = new ExceptionAttempt(t, attemptNumber, TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTime));        }
for (RetryListener listener : listeners) { // 3. 如果有***,通知 listener.onRetry(attempt); }
if (!rejectionPredicate.apply(attempt)) { // 4. 如果执行callable出现异常,则返回异常的attemptreturn attempt.get(); }if (stopStrategy.shouldStop(attempt)) { // 5. 根据停止策略判断是否停止重试throw new RetryException(attemptNumber, attempt); // 若停止,抛出异常 } else {long sleepTime = waitStrategy.computeSleepTime(attempt); // 6. 根据等待策略计算休眠时间try { blockStrategy.block(sleepTime); // 7. 根据阻塞策略决定休眠行为,默认为sleep } catch (InterruptedException e) { Thread.currentThread().interrupt();throw new RetryException(attemptNumber, attempt); } } }}
这个方法逻辑很清晰,可以结合作者的注释阅读,主要流程如下:
1. 记录开始时间,便于后续判断是否超过限制时间
2. 通过 attemptTimeLimiter 执行 callable 任务,得到 attempt。attempt 代表着每次执行,记录了如执行结果、执行次数、距离第一次执行的延迟时间、异常原因等信息。
  • 如果 attemptTimeLimiter 是 NoAttemptTimeLimit,则直接调用 callable.call 执行。
  • 如果 attemptTimeLimiter 是 FixedAttemptTimeLimit,则调用 timeLimiter.callWithTimeout 限制执行时间。
3. 通知监听器,进行一些回调操作
4. rejectionPredicate 默认为 alwaysFalse,如果执行 callable 出现异常,则 rejectionPredicate 会返回异常的 attempt
rejectionPredicate = Predicates.or(rejectionPredicate, new ExceptionClassPredicate(RuntimeException.class));
5. 根据停止策略判断是否停止重试,若停止,抛出 RetryException 异常表示最终重试失败
6. 根据等待策略计算休眠时间
7. 根据阻塞策略决定休眠行为,默认为 Thread.sleep(躺着啥也不干)
就是这样,该库能够实现灵活的重试,并不复杂,有兴趣的同学可以去看下源码~

有道无术,术可成;有术无道,止于术

欢迎大家关注Java之道公众号


好文章,我在看❤️

浏览 32
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报