分布式训练框架Horovod初步学习

共 5140字,需浏览 11分钟

 ·

2020-11-06 09:05

简介

Horovod 是 TensorFlow、Keras、PyTorch 和 Apache MXNet 的分布式深度学习训练框架。Horovod 的目标是使分布式深度学习快速且易于使用。

简单来说就是为这些框架提供分布式支持,比如有一个需求,由于数据量过大(千万级),想要在128个GPU上运行,以便于快速得到结果,这时候就可以用horovod,只需要简单改不多的代码,就可以将原来在单GPU上跑的模型,并行跑在128个GPU上。

安装

  • 安装CMake:https://cmake.org/install/

  • 如果您安装了 PyPI 中的 TensorFlow,请确保Tensorflow已安装 或安装了g++-4.8.5``g++-4.9

  • 如果您从PyPI:https://pypi.org/project/torch 安装了 PyTorch,请确保已安装了g++-4.9

  • 如果已安装来自Conda 的任一包,请确保已安装 Conda 中的gxx_linux-64

  • 安装 pip horovod 在 CPU 上运行:

$ pip install horovod
  • 要使用 NCCL 在 GPU 上运行:
$ HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

有关使用 GPU 支持安装 Horovod 的更多详细信息,请阅读GPU 上的 Horovod。

名词解释

rank:

表示进程序号,用于进程间通讯,表征进程优先级。rank = 0 的主机为 master 节点。

local_rank:

进程内,GPU 编号,非显式参数,由 torch.distributed.launch 内部指定。比方说, rank = 3,local_rank = 0 表示第 3 个进程内的第 1 块 GPU。

allreduce:

累加所有数据,并同步到所有节点的操作

allgather:

收集所有数据,并同步到所有节点的操作,完成后每个节点都包含所有节点的数据,并且这些数据单独存在

broadcast:

将数据(需要由根节点确认)从一个节点传播到其他所有节点的操作

使用指南

添加以下步骤:

  1. hvd.init()用于初始化horovod

  2. 将每个GPU固定给单个进程处理,以避免资源竞争。

    每个进程设置为一个GPU,通过设置local rank参数,服务器上的第一个进程将分配第一个 GPU,第二个进程将分配第二个 GPU,等等

   if torch.cuda.is_available():
       torch.cuda.set_device(hvd.local_rank())
  1. 根据线程个数缩放学习率

  2. 将优化器包装在hvd.DistributedOptimizer中。

    分布式优化器将梯度计算委托给原始优化器,使用allduceallgather来平均梯度,然后应用这些平均梯度。

  3. 将初始变量的状态从rank 0广播至其他进程。需要保证初始化的一致性。

  4. 修改权重保存部分源码,只通过worker 0保存权重,防止由于多线程操作导致的冲突。

Tensorflow + Horovod

这里Tensorflow是1.x版本,更加稳定一些,以下是一个修改示例。

import tensorflow as tf
import horovod.tensorflow as hvd


# Initialize Horovod
hvd.init()

# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

# Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

# Add hook to broadcast variables from rank 0 to all other processes during
# initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

# Make training operation
train_op = opt.minimize(loss)

# Save checkpoints only on worker 0 to prevent other workers from corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None

# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                       config=config,
                                       hooks=hooks) as mon_sess:
  while not mon_sess.should_stop():
    # Perform synchronous training.
    mon_sess.run(train_op)

完整代码如下:

import os
import errno
import tensorflow as tf
import horovod.tensorflow as hvd
import numpy as np
import argparse

from tensorflow import keras

layers = tf.layers

tf.logging.set_verbosity(tf.logging.INFO)

# Training settings
parser = argparse.ArgumentParser(description='Tensorflow MNIST Example')
parser.add_argument('--use-adasum', action='store_true', default=False,
                    help='use adasum algorithm to do reduction')
parser.add_argument('--gradient-predivide-factor', type=float, default=1.0,
                    help='apply gradient predivide factor in optimizer (default: 1.0)')
args = parser.parse_args()

def conv_model(feature, target, mode):
    """2-layer convolution model."""
    # Convert the target to a one-hot tensor of shape (batch_size, 10) and
    # with a on-value of 1 for each one-hot vector of length 10.
    target = tf.one_hot(tf.cast(target, tf.int32), 1010)

    # Reshape feature to 4d tensor with 2nd and 3rd dimensions being
    # image width and height final dimension being the number of color channels.
    feature = tf.reshape(feature, [-128281])

    # First conv layer will compute 32 features for each 5x5 patch
    with tf.variable_scope('conv_layer1'):
        h_conv1 = layers.conv2d(feature, 32, kernel_size=[55],
                                activation=tf.nn.relu, padding="SAME")
        h_pool1 = tf.nn.max_pool(
            h_conv1, ksize=[1221], strides=[1221], padding='SAME')

    # Second conv layer will compute 64 features for each 5x5 patch.
    with tf.variable_scope('conv_layer2'):
        h_conv2 = layers.conv2d(h_pool1, 64, kernel_size=[55],
                                activation=tf.nn.relu, padding="SAME")
        h_pool2 = tf.nn.max_pool(
            h_conv2, ksize=[1221], strides=[1221], padding='SAME')
        # reshape tensor into a batch of vectors
        h_pool2_flat = tf.reshape(h_pool2, [-17 * 7 * 64])

    # Densely connected layer with 1024 neurons.
    h_fc1 = layers.dropout(
        layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu),
        rate=0.5, training=mode == tf.estimator.ModeKeys.TRAIN)

    # Compute logits (1 per class) and compute loss.
    logits = layers.dense(h_fc1, 10, activation=None)
    loss = tf.losses.softmax_cross_entropy(target, logits)

    return tf.argmax(logits, 1), loss


def train_input_generator(x_train, y_train, batch_size=64):
    assert len(x_train) == len(y_train)
    while True:
        p = np.random.permutation(len(x_train))
        x_train, y_train = x_train[p], y_train[p]
        index = 0
        while index <= len(x_train) - batch_size:
            yield x_train[index:index + batch_size], \
                  y_train[index:index + batch_size],
            index += batch_size


def main(_):
    # Horovod: initialize Horovod.
    hvd.init()

    # Keras automatically creates a cache directory in ~/.keras/datasets for
    # storing the downloaded MNIST data. This creates a race
    # condition among the workers that share the same filesystem. If the
    # directory already exists by the time this worker gets around to creating
    # it, ignore the resulting exception and continue.
    cache_dir = os.path.join(os.path.expanduser('~'), '.keras''datasets')
    if not os.path.exists(cache_dir):
        try:
            os.mkdir(cache_dir)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(cache_dir):
                pass
            else:
                raise

    # Download and load MNIST dataset.
    (x_train, y_train), (x_test, y_test) = \
        keras.datasets.mnist.load_data('MNIST-data-%d' % hvd.rank())

    # The shape of downloaded data is (-1, 28, 28), hence we need to reshape it
    # into (-1, 784) to feed into our network. Also, need to normalize the
    # features between 0 and 1.
    x_train = np.reshape(x_train, (-1784)) / 255.0
    x_test = np.reshape(x_test, (-1784)) / 255.0

    # Build model...
    with tf.name_scope('input'):
        image = tf.placeholder(tf.float32, [None784], name='image')
        label = tf.placeholder(tf.float32, [None], name='label')
    predict, loss = conv_model(image, label, tf.estimator.ModeKeys.TRAIN)

    lr_scaler = hvd.size()
    # By default, Adasum doesn't need scaling when increasing batch size. If used with NCCL,
    # scale lr by local_size
    if args.use_adasum:
        lr_scaler = hvd.local_size() if hvd.nccl_built() else 1

    # Horovod: adjust learning rate based on lr_scaler.
    opt = tf.train.AdamOptimizer(0.001 * lr_scaler)

    # Horovod: add Horovod Distributed Optimizer.
    opt = hvd.DistributedOptimizer(opt, op=hvd.Adasum if args.use_adasum else hvd.Average,
                                   gradient_predivide_factor=args.gradient_predivide_factor)

    global_step = tf.train.get_or_create_global_step()
    train_op = opt.minimize(loss, global_step=global_step)

    hooks = [
        # Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states
        # from rank 0 to all other processes. This is necessary to ensure consistent
        # initialization of all workers when training is started with random weights
        # or restored from a checkpoint.
        hvd.BroadcastGlobalVariablesHook(0),

        # Horovod: adjust number of steps based on number of GPUs.
        tf.train.StopAtStepHook(last_step=20000 // hvd.size()),

        tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
                                   every_n_iter=10),
    ]

    # Horovod: pin GPU to be used to process local rank (one GPU per process)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.visible_device_list = str(hvd.local_rank())

    # Horovod: save checkpoints only on worker 0 to prevent other workers from
    # corrupting them.
    checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
    training_batch_generator = train_input_generator(x_train,
                                                     y_train, batch_size=100)
    # The MonitoredTrainingSession takes care of session initialization,
    # restoring from a checkpoint, saving to a checkpoint, and closing when done
    # or an error occurs.
    with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                           hooks=hooks,
                                           config=config) as mon_sess:
        while not mon_sess.should_stop():
            # Run a training step synchronously.
            image_, label_ = next(training_batch_generator)
            mon_sess.run(train_op, feed_dict={image: image_, label: label_})


if __name__ == "__main__":
    tf.app.run()

PyTorch + Horovod

  1. 运行hvd.init()

  2. 将每个 GPU 固定到单个进程。

    每个进程的典型设置为一个 GPU,请将此设置为本地排名。服务器上的第一个进程将分配第一个 GPU,第二个进程将分配第二个 GPU,等等。

    if torch.cuda.is_available():
        torch.cuda.set_device(hvd.local_rank())
  3. 按线程数缩放学习率。

    同步分布式培训中的有效批次大小按工作人员数量进行缩放。学习率的提高弥补了批次大小的增加。

  4. 将优化器包装在hvd.DistributedOptimizer 分布式优化器将梯度计算委托给原始优化器,使用allduceall 聚集来平均梯度,然后应用这些平均梯度。

  5. 将初始变量状态从排名 0 广播到所有其他进程:

hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

在使用随机权重开始训练或从检查点恢复训练时,这对于确保所有工作人员的一致初始化是必要的。

  • 修改代码以仅保存工作线程 0 上的检查点,以防止其他工作人员损坏它们。

通过使用 保护模型检查点代码,实现此目的。hvd.rank() != 0

import torch
import horovod.torch as hvd

# Initialize Horovod
hvd.init()

# Pin GPU to be used to process local rank (one GPU per process)
torch.cuda.set_device(hvd.local_rank())

# Define dataset...
train_dataset = ...

# Partition dataset among workers using DistributedSampler
train_sampler = torch.utils.data.distributed.DistributedSampler(
    train_dataset, num_replicas=hvd.size(), rank=hvd.rank())

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)

# Build model...
model = ...
model.cuda()

optimizer = optim.SGD(model.parameters())

# Add Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

# Broadcast parameters from rank 0 to all other processes.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)

for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
       optimizer.zero_grad()
       output = model(data)
       loss = F.nll_loss(output, target)
       loss.backward()
       optimizer.step()
       if batch_idx % args.log_interval == 0:
           print('Train Epoch: {} [{}/{}]\tLoss: {}'.format(
               epoch, batch_idx * len(data), len(train_sampler), loss.item()))

完整代码:

import argparse
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.utils.data.distributed
import horovod.torch as hvd

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
                    help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
                    help='use fp16 compression during allreduce')
parser.add_argument('--use-adasum', action='store_true', default=False,
                    help='use adasum algorithm to do reduction')
parser.add_argument('--gradient-predivide-factor', type=float, default=1.0,
                    help='apply gradient predivide factor in optimizer (default: 1.0)')


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(110, kernel_size=5)
        self.conv2 = nn.Conv2d(1020, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(32050)
        self.fc2 = nn.Linear(5010)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def train(epoch):
    model.train()
    # Horovod: set epoch to sampler for shuffling.
    train_sampler.set_epoch(epoch)
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            # Horovod: use train_sampler to determine the number of examples in
            # this worker's partition.
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_sampler),
                100. * batch_idx / len(train_loader), loss.item()))


def metric_average(val, name):
    tensor = torch.tensor(val)
    avg_tensor = hvd.allreduce(tensor, name=name)
    return avg_tensor.item()


def test():
    model.eval()
    test_loss = 0.
    test_accuracy = 0.
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        output = model(data)
        # sum up batch loss
        test_loss += F.nll_loss(output, target, size_average=False).item()
        # get the index of the max log-probability
        pred = output.data.max(1, keepdim=True)[1]
        test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()

    # Horovod: use test_sampler to determine the number of examples in
    # this worker's partition.
    test_loss /= len(test_sampler)
    test_accuracy /= len(test_sampler)

    # Horovod: average metric values across workers.
    test_loss = metric_average(test_loss, 'avg_loss')
    test_accuracy = metric_average(test_accuracy, 'avg_accuracy')

    # Horovod: print output only on first rank.
    if hvd.rank() == 0:
        print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
            test_loss, 100. * test_accuracy))


if __name__ == '__main__':
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    # Horovod: initialize library.
    hvd.init()
    torch.manual_seed(args.seed)

    if args.cuda:
        # Horovod: pin GPU to local rank.
        torch.cuda.set_device(hvd.local_rank())
        torch.cuda.manual_seed(args.seed)


    # Horovod: limit # of CPU threads to be used per worker.
    torch.set_num_threads(1)

    kwargs = {'num_workers'1'pin_memory'Trueif args.cuda else {}
    # When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
    # issues with Infiniband implementations that are not fork-safe
    if (kwargs.get('num_workers'0) > 0 and hasattr(mp, '_supports_context'and
            mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
        kwargs['multiprocessing_context'] = 'forkserver'

    train_dataset = \
        datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ]))
    # Horovod: use DistributedSampler to partition the training data.
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)

    test_dataset = \
        datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ]))
    # Horovod: use DistributedSampler to partition the test data.
    test_sampler = torch.utils.data.distributed.DistributedSampler(
        test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
                                              sampler=test_sampler, **kwargs)

    model = Net()

    # By default, Adasum doesn't need scaling up learning rate.
    lr_scaler = hvd.size() if not args.use_adasum else 1

    if args.cuda:
        # Move model to GPU.
        model.cuda()
        # If using GPU Adasum allreduce, scale learning rate by local_size.
        if args.use_adasum and hvd.nccl_built():
            lr_scaler = hvd.local_size()

    # Horovod: scale learning rate by lr_scaler.
    optimizer = optim.SGD(model.parameters(), lr=args.lr * lr_scaler,
                          momentum=args.momentum)

    # Horovod: broadcast parameters & optimizer state.
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
    hvd.broadcast_optimizer_state(optimizer, root_rank=0)

    # Horovod: (optional) compression algorithm.
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

    # Horovod: wrap optimizer with DistributedOptimizer.
    optimizer = hvd.DistributedOptimizer(optimizer,
                                         named_parameters=model.named_parameters(),
                                         compression=compression,
                                         op=hvd.Adasum if args.use_adasum else hvd.Average,
                                         gradient_predivide_factor=args.gradient_predivide_factor)

    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test()

训练命令

开始训练,指定worker个数:

# run training with 4 GPUs on a single machine
$ horovodrun -np 4 python train.py

# run training with 8 GPUs on two machines (4 GPUs each)
$ horovodrun -np 8 -H hostname1:4,hostname2:4 python train.py

参考

https://github.com/horovod/horovod





欢迎添加笔者微信加群讨论


浏览 40
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报