关于Dubbo随便问八个问题

共 15220字,需浏览 31分钟

 ·

2021-01-13 16:10




1、RPC

1.1 RPC 定义

互联网公司的系统有成千上万个大大小小的服务组成,服务各自部署在不同的机器上,服务间的调用需要用到网络通信,服务消费方每调用一个服务都要写一坨网络通信相关的代码,不仅复杂而且极易出错。还要考虑新服务依赖老服务时如何调用老服务,别的服务依赖新服务的时候新服务如何发布方便他人调用。如何解决这个问题呢?业界一般采用RPC远程调用的方式来实现。

RPC

Remote Procedure Call Protocol 既 远程过程调用,一种能让我们像调用本地服务一样调用远程服务,可以让调用者对网络通信这些细节无感知,比如服务消费方在执行 helloWorldService.sayHello("sowhat") 时,实质上调用的是远端的服务。这种方式其实就是RPCRPC思想在各大互联网公司中被广泛使用,如阿里巴巴的dubbo、当当的Dubbox 、Facebook 的 thrift、Google 的grpc、Twitter的finagle等。

1.2 RPC demo

说了那么多,还是实现一个简易版的RPC demo吧。

1.2.1 公共接口
public interface SoWhatService {
    String sayHello(String name);  

1.2.2  服务提供者

接口类实现

public class SoWhatServiceImpl implements SoWhatService
{
 @Override
 public String sayHello(String name)
 
{
  return "你好啊 " + name;
 }
}  

服务注册对外提供者

/**
 * 服务注册对外提供者
 */


public class ServiceFramework
{
 public static void export(Object service, int port) throws Exception
 
{
  ServerSocket server = new ServerSocket(port);
  while (true)
  {
   Socket socket = server.accept();
   new Thread(() ->
   {
    try
    {
     //反序列化
     ObjectInputStream input = new ObjectInputStream(socket.getInputStream());
     //读取方法名
     String methodName =(String) input.readObject();
     //参数类型
     Class[] parameterTypes = (Class[]) input.readObject();
     //参数
     Object[] arguments = (Object[]) input.readObject();
     //找到方法
     Method method = service.getClass().getMethod(methodName, parameterTypes);
     //调用方法
     Object result = method.invoke(service, arguments);
     // 返回结果
     ObjectOutputStream output = new ObjectOutputStream(socket.getOutputStream());
     output.writeObject(result);
    } catch (Exception e)
    {
     e.printStackTrace();
    }
   }).start();
  }
 }
}

服务运行

public class ServerMain
{
 public static void main(String[] args)
 
{
  //服务提供者 暴露出接口
  SoWhatService service = new SoWhatServiceImpl();
  try
  {
   ServiceFramework.export(service, 1412);
  } catch (Exception e)
  {
   e.printStackTrace();
  }
 }
}
1.2.3 服务调用者

动态代理调用远程服务

/**
 * @author sowhat
 * 动态代理调用远程服务
 */

public class RpcFunction
{
 public static  refer(Class interfaceClass, String host, int port) throws Exception
 
{
  return (T) Proxy.newProxyInstance(interfaceClass.getClassLoader(), new Class[]{interfaceClass},
    new InvocationHandler()
    {
     @Override
     public Object invoke(Object proxy, Method method, Object[] arguments) throws Throwable
     
{
      //指定 provider 的 ip 和端口
      Socket socket = new Socket(host, port);
      ObjectOutputStream output = new ObjectOutputStream(socket.getOutputStream());
      //传方法名
      output.writeObject(method.getName());
      //传参数类型
      output.writeObject(method.getParameterTypes());
      //传参数值
      output.writeObject(arguments);
      ObjectInputStream input = new ObjectInputStream(socket.getInputStream());
      //读取结果
      Object result = input.readObject();
      return result;
     }
    });
 }
}

调用方法

public class RunMain
{
 public static void main(String[] args)
 
{
  try
  {
   //服务调用者 需要设置依赖
   SoWhatService service = RpcFunction.refer(SoWhatService.class, "127.0.0.1", 1412);
   System.out.println(service.sayHello(" sowhat1412"));
  } catch (Exception e)
  {
   e.printStackTrace();
  }
 }
}

2、Dubbo 框架设计

2.1  Dubbo 简介

Dubbo 是阿里巴巴研发开源工具,主要分为2.6.x 跟 2.7.x 版本。是一款分布式、高性能、透明化的 RPC 服务框架,提供服务自动注册、自动发现等高效服务治理方案,可以和Spring 框架无缝集成,它提供了6大核心能力:

1. 面向接口代理的高性能RPC调用

2. 智能容错和负载均衡 

3. 服务自动注册和发现

4. 高度可扩展能力 

5. 运行期流量调度

6. 可视化的服务治理与运维

调用过程

  1. 服务提供者 Provider 启动然后向 Registry 注册自己所能提供的服务。
  2. 服务消费者 Consumer 向Registry订阅所需服务,Consumer 解析Registry提供的元信息,从服务中通过负载均衡选择 Provider调用。
  3. 服务提供方 Provider 元数据变更的话Registry会把变更推送给Consumer,以此保证Consumer获得最新可用信息。

注意点

  1. ProviderConsumer 在内存中记录调用次数跟时间,定时发送统计数据到Monitor,发送的时候是连接。
  2. MonitorRegistry 是可选的,可直接在配置文件中写好,ProviderConsumer进行直连。
  3. MonitorRegistry 挂了也没事, Consumer 本地缓存了 Provider 信息。
  4. Consumer 直接调用 Provider 不会经过 RegistryProviderConsumer这俩到 Registry之间是长连接。

2.2 Dubbo框架分层

如上图,总的而言 Dubbo 分为三层。

  1. Busines层:由用户自己来提供接口和实现还有一些配置信息。
  2. RPC层:真正的RPC调用的核心层,封装整个RPC的调用过程、负载均衡、集群容错、代理。
  3. Remoting层:对网络传输协议和数据转换的封装。

如果每一层再细分下去,一共有十层。

  1. 接口服务层(Service):该层与业务逻辑相关,根据 provider 和 consumer 的业务设计对应的接口和实现。
  2. 配置层(Config):对外配置接口,以 ServiceConfig 和 ReferenceConfig 为中心初始化配置。
  3. 服务代理层(Proxy):服务接口透明代理,Provider跟Consumer都生成代理类,使得服务接口透明,代理层实现服务调用跟结果返回。
  4. 服务注册层(Registry):封装服务地址的注册和发现,以服务 URL 为中心。
  5. 路由层(Cluster):封装多个提供者的路由和负载均衡,并桥接注册中心,以Invoker 为中心,扩展接口为 Cluster、Directory、Router 和 LoadBlancce。
  6. 监控层(Monitor):RPC 调用次数和调用时间监控,以 Statistics 为中心,扩展接口为 MonitorFactory、Monitor 和 MonitorService。
  7. 远程调用层(Protocal):封装 RPC 调用,以 Invocation 和 Result 为中心,扩展接口为 Protocal、Invoker 和 Exporter。
  8. 信息交换层(Exchange):封装请求响应模式,同步转异步。以 Request 和Response 为中心,扩展接口为 Exchanger、ExchangeChannel、ExchangeClient 和 ExchangeServer。
  9. 网络传输层(Transport):抽象 mina 和 netty 为统一接口,以 Message 为中心,扩展接口为 Channel、Transporter、Client、Server 和 Codec。
  10. 数据序列化层(Serialize):可复用的一些工具,扩展接口为 Serialization、ObjectInput、ObjectOutput 和 ThreadPool。

他们之间的调用关系直接看下面官网图即可。


3、Dubbo SPI 机制

Dubbo 采用 微内核设计 + SPI 扩展技术来搭好核心框架,同时满足用户定制化需求。这里重点说下SPI

3.1 微内核

操作系统层面的微内核跟宏内核:

  1. 微内核Microkernel:是一种内核的设计架构,由尽可能精简的程序所组成,以实现一个操作系统所需要的最基本功能,包括了底层的寻址空间管理、线程管理、与进程间通信。成功案例是QNX系统,比如黑莓手机跟车用市场。
  2. 宏内核Monolithic :把 进程管理、内存管理、文件系统、进程通信等功能全部作为内核来实现,而微内核则仅保留最基础的功能,Linux 就是宏内核架构设计。

Dubbo中的广义微内核:

  1. 思想是 核心系统 + 插件,说白了就是把不变的功能抽象出来称为核心,把变动的功能作为插件来扩展,符合开闭原则,更容易扩展、维护。比如小霸王游戏机中机体本身作为核心系统,游戏片就是插件。vscode、Idea、chrome等都是微内核的产物。
  2. 微内核架构其实是一直架构思想,可以是框架层面也可以是某个模块设计,它的本质就是将变化的部分抽象成插件,使得可以快速简便地满足各种需求又不影响整体的稳定性。

3.2 SPI 含义

主流的数据库有MySQL、Oracle、DB2等,这些数据库是不同公司开发的,它们的底层协议不大一样,那怎么约束呢?一般就是定制统一接口,具体实现不管,反正面向相同的接口编程即可。等到真正使用的时候用具体的实现类就好,问题是哪里找用那个实现类呢?这时候就采用约定好的法则将实现类写到指定位置即可。

SPI 全称为 Service Provider Interface,是一种服务发现机制。它约定在ClassPath路径下的META-INF/services文件夹查找文件,自动加载文件里所定义的类。

3.3 SPI demo

接口:

package com.example.demo.spi;

public interface SPIService {
    void execute();
}

实现类1:

public class SpiImpl1 implements SPIService{
 @Override
    public void execute() {
        System.out.println("SpiImpl1.execute()");
    }
}

实现类2:

public class SpiImpl2 implements SPIService{
 @Override
    public void execute() {
  System.out.println("SpiImpl2.execute()");
    }
}

配置路径

调用加载类

package com.example.demo.spi;
import sun.misc.Service;
import java.util.Iterator;
import java.util.ServiceLoader;

public class Test {
    public static void main(String[] args) {    
        Iterator providers = Service.providers(SPIService.class);
        ServiceLoader load = ServiceLoader.load(SPIService.class);

        while(providers.hasNext()) {
            SPIService ser = providers.next();
            ser.execute();
        }
        System.out.println("--------------------------------");
        Iterator iterator = load.iterator();
        while(iterator.hasNext()) {
            SPIService ser = iterator.next();
            ser.execute();
        }
    }
}

3.4 SPI源码追踪

ServiceLoader.load(SPIService.class) 底层调用大致逻辑如下:iterator.hasNext() 跟 iterator.next()底层调用大致如下:

3.5 Java SPI缺点

  1. 不能按需加载,Java SPI在加载扩展点的时候,会一次性加载所有可用的扩展点,很多是不需要的,会浪费系统资源。
  2. 获取某个实现类的方式不够灵活,只能通过 Iterator 形式获取,不能根据某个参数来获取对应的实现类。
  3. 不支持AOP与依赖注入,JAVA SPI可能会丢失加载扩展点异常信息,导致追踪问题很困难。

3.6 Dubbo SPI

JDK自带的不好用Dubbo 就自己实现了一个 SPI,该SPI 可以通过名字实例化指定的实现类,并且实现了 IOC 、AOP 与 自适应扩展 SPI

key = com.sowhat.value

Dubbo 对配置文件目录的约定,不同于 Java SPI ,Dubbo 分为了三类目录。

  1. META-INF/services/ :该目录下 SPI 配置文件是为了用来兼容 Java SPI 。
  2. META-INF/dubbo/ :该目录存放用户自定义的 SPI 配置文件。
  3. META-INF/dubbo/internal/ :该目录存 Dubbo 内部使用的 SPI 配置文件。

使用的话很简单 引入依赖,然后百度教程即可。

@Test
 void sowhat()
 
{
  ExtensionLoader spiService = ExtensionLoader.getExtensionLoader(SPIService.class);        //按需获取实现类对象
  SPIService demo1 = spiService.getExtension("SpiImpl1");
  demo1.execute();
 }

3.7 Dubbo SPI源码追踪

ExtensionLoader.getExtension 方法的整个思路是 查找缓存是否存在,不存在则读取SPI文件,通过反射创建类,然后设置依赖注入这些东西,有包装类就包装下,执行流程如下图所示:

说下重要的四个部分:

  1. injectExtension  IOC

查找 set 方法,根据参数找到依赖对象则注入。

  1. WrapperClass AOP

包装类,Dubbo 帮你自动包装,只需要某个扩展类的构造函数只有一个参数,并且是扩展接口类型,就会被判定为包装类。

  1. Activate

Active 有三个属性,group 表示修饰在哪个端,是 provider 还是 consumer,value 表示在 URL参数中出现才会被激活,order 表示实现类的顺序。

3.8 Adaptive  自适应扩展

需求:根据配置来进行 SPI 扩展的加载后不想在启动的时候让扩展被加载,想根据请求时候的参数来动态选择对应的扩展。实现:Dubbo用代理机制实现了自适应扩展,为用户想扩展的接口 通过JDK 或者 Javassist 编译生成一个代理类,然后通过反射创建实例。实例会根据本来方法的请求参数得知需要的扩展类,然后通过 ExtensionLoader.getExtensionLoader(type.class).getExtension(name)来获取真正的实例来调用,看个官网样例。

public interface WheelMaker {
    Wheel makeWheel(URL url);
}
// WheelMaker 接口的自适应实现类
public class AdaptiveWheelMaker implements WheelMaker {
    public Wheel makeWheel(URL url) {
        if (url == null) {
            throw new IllegalArgumentException("url == null");
        }
     // 1. 调用 url 的 getXXX 方法获取参数值
        String wheelMakerName = url.getParameter("Wheel.maker");
        if (wheelMakerName == null) {
            throw new IllegalArgumentException("wheelMakerName == null");
        }
        // 2. 调用 ExtensionLoader 的 getExtensionLoader 获取加载器
        // 3. 调用 ExtensionLoader 的 getExtension 根据从url获取的参数作为类名称加载实现类
        WheelMaker wheelMaker = ExtensionLoader.getExtensionLoader(WheelMaker.class).getExtension(wheelMakerName);
        // 4. 调用实现类的具体方法实现调用。
        return wheelMaker.makeWheel(URL url);
    }
}

查看Adaptive注解源码可知该注解可用在方法上,Adaptive 注解在类上或者方法上有不同的实现逻辑。

7.8.1 Adaptive 注解在类上

Adaptive 注解在类上时,Dubbo 不会为该类生成代理类,Adaptive 注解在类上的情况很少,在 Dubbo 中,仅有两个类被 Adaptive 注解了,分别是 AdaptiveCompiler 和 AdaptiveExtensionFactory,表示拓展的加载逻辑由人工编码完成,这不是我们关注的重点。

7.8.2 Adaptive 注解在方法上

Adaptive 注解在方法上时,Dubbo 则会为该方法生成代理逻辑,表示拓展的加载逻辑需由框架自动生成,大致的实现机制如下:

  1. 加载标注有 @Adaptive 注解的接口,如果不存在,则不支持 Adaptive 机制;
  2. 为目标接口按照一定的模板生成子类代码,并且编译生成的代码,然后通过反射生成该类的对象;
  3. 结合生成的对象实例,通过传入的URL对象,获取指定key的配置,然后加载该key对应的类对象,最终将调用委托给该类对象进行。
@SPI("apple")
public interface FruitGranter {
  Fruit grant();
  @Adaptive
  String watering(URL url);
}
---
// 苹果种植者
public class AppleGranter implements FruitGranter {
  @Override
  public Fruit grant() {
    return new Apple();
  }
  @Override
  public String watering(URL url) {
    System.out.println("watering apple");
    return "watering finished";
  }
}
---
// 香蕉种植者
public class BananaGranter implements FruitGranter {
  @Override
  public Fruit grant() {
    return new Banana();
  }
  @Override
  public String watering(URL url) {
    System.out.println("watering banana");
    return "watering success";
  }
}

调用方法实现:

public class ExtensionLoaderTest {
  @Test
  public void testGetExtensionLoader() {
    // 首先创建一个模拟用的URL对象
    URL url = URL.valueOf("dubbo://192.168.0.1:1412?fruit.granter=apple");
    // 通过ExtensionLoader获取一个FruitGranter对象
    FruitGranter granter = ExtensionLoader.getExtensionLoader(FruitGranter.class)
      .getAdaptiveExtension()
;
    // 使用该FruitGranter调用其"自适应标注的"方法,获取调用结果
    String result = granter.watering(url);
    System.out.println(result);
  }
}

通过如上方式生成一个内部类。大致调用流程如下:

4、Dubbo 服务暴露流程

4.1 服务暴露总览

Dubbo框架是以URL为总线的模式,运行过程中所有的状态数据信息都可以通过URL来获取,比如当前系统采用什么序列化,采用什么通信,采用什么负载均衡等信息,都是通过URL的参数来呈现的,所以在框架运行过程中,运行到某个阶段需要相应的数据,都可以通过对应的KeyURL的参数列表中获取。URL 具体的参数如下:

protocol:指的是 dubbo 中的各种协议,如:dubbo thrift http username/password:用户名/密码 host/port:主机/端口 path:接口的名称 parameters:参数键值对

protocol://username:password@host:port/path?k=v

服务暴露从代码流程看分为三部分:

  1. 检查配置,最终组装成 URL
  2. 暴露服务到到本地服务跟远程服务。
  3. 服务注册至注册中心。

服务暴露从对象构建转换看分为两步:

  1. 将服务封装成Invoker
  2. Invoker通过协议转换为Exporter

4.2  服务暴露源码追踪

  1. 容器启动,Spring IOC 刷新完毕后调用 onApplicationEvent 开启服务暴露,ServiceBean 。
  2. export 跟 doExport 来进行拼接构建URL,为屏蔽调用的细节,统一暴露出一个可执行体,通过ProxyFactory 获取到 invoker。
  3. 调用具体 Protocol 将把包装后的 invoker 转换成 exporter,此处用到了SPI。
  4. 然后启动服务器server,监听端口,使用NettyServer创建监听服务器。
  5. 通过 RegistryProtocol 将URL注册到注册中心,使得consumer可获得provider信息。

5、Dubbo 服务引用流程

Dubbo中一个可执行体就是一个invoker,所以 provider 跟 consumer 都要向 invoker 靠拢。通过上面demo可知为了无感调用远程接口,底层需要有个代理类包装 invoker。

服务的引入时机有两种

  1. 饿汉式:

通过实现 Spring 的 InitializingBean 接口中的 afterPropertiesSet 方法,容器通过调用 ReferenceBean的 afterPropertiesSet 方法时引入服务。

  1. 懒汉式(默认):

懒汉式是只有当服务被注入到其他类中时启动引入流程。

服务引用的三种方式

  1. 本地引入:服务暴露时本地暴露,避免网络调用开销。
  2. 直接连接引入远程服务:不启动注册中心,直接写死远程Provider地址 进行直连。
  3. 通过注册中心引入远程服务:通过注册中心抉择如何进行负载均衡调用远程服务。

服务引用流程

  1. 检查配置构建map ,map 构建 URL ,通过URL上的协议利用自适应扩展机制调用对应的 protocol.refer 得到相应的 invoker ,此处
  2. 想注册中心注册自己,然后订阅注册中心相关信息,得到provider的 ip 等信息,再通过共享的netty客户端进行连接。
  3. 当有多个 URL 时,先遍历构建出 invoker 然后再由 StaticDirectory 封装一下,然后通过 cluster 进行合并,只暴露出一个 invoker 。
  4. 然后再构建代理,封装 invoker 返回服务引用,之后 Comsumer 调用的就是这个代理类。


调用方式

  1. oneway:不关心请求是否发送成功。
  2. Async异步调用:Dubbo天然异步,客户端调用请求后将返回的 ResponseFuture 存到上下文中,用户可随时调用 future.get 获取结果。异步调用通过唯一ID 标识此次请求。
  3. Sync同步调用:在 Dubbo 源码中就调用了 future.get,用户感觉方法被阻塞了,必须等结果后才返回。

6、Dubbo 调用整体流程

调用之前你可能需要考虑这些事

  1. consumer 跟 provider 约定好通讯协议,dubbo支持多种协议,比如dubbo、rmi、hessian、http、webservice等。默认走dubbo协议,连接属于单一长连接NIO异步通信。适用传输数据量很小(单次请求在100kb以内),但是并发量很高。
  2. 约定序列化模式,大致分为两大类,一种是字符型(XML或json 人可看懂 但传输效率低),一种是二进制流(数据紧凑,机器友好)。默认使用 hessian2作为序列化协议。
  3. consumer 调用 provider 时提供对应接口、方法名、参数类型、参数值、版本号。
  4. provider列表对外提供服务涉及到负载均衡选择一个provider提供服务。
  5. consumer 跟 provider 定时向monitor 发送信息。

调用大致流程

  1. 客户端发起请求来调用接口,接口调用生成的代理类。代理类生成RpcInvocation 然后调用invoke方法。
  2. ClusterInvoker获得注册中心中服务列表,通过负载均衡给出一个可用的invoker。
  3. 序列化跟反序列化网络传输数据。通过NettyServer调用网络服务。
  4. 服务端业务线程池接受解析数据,从exportMap找到invoker进行invoke。
  5. 调用真正的Impl得到结果然后返回。

调用方式

  1. oneway:不关心请求是否发送成功,消耗最小。
  2. sync同步调用:在 Dubbo 源码中就调用了 future.get,用户感觉方法被阻塞了,必须等结果后才返回。
  3. Async 异步调用:Dubbo天然异步,客户端调用请求后将返回的 ResponseFuture 存到上下文中,用户可以随时调用future.get获取结果。异步调用通过唯一ID标识此次请求。

7、Dubbo集群容错负载均衡

Dubbo 引入了ClusterDirectoryRouterLoadBalanceInvoker模块来保证Dubbo系统的稳健性,它们的关系如下图:


  1. 服务发现时会将多个多个远程调用放入Directory,然后通过Cluster封装成一个Invoker,该invoker提供容错功能。
  2. 消费者代用的时候从Directory中通过负载均衡获得一个可用invoker,最后发起调用。
  3. 你可以认为Dubbo中的Cluster对上面进行了大的封装,自带各种鲁棒性功能。

7.1 集群容错

集群容错是在消费者端通过Cluster子类实现的,Cluster接口有10个实现类,每个Cluster实现类都会创建一个对应的ClusterInvoker对象。核心思想是让用户选择性调用这个Cluster中间层,屏蔽后面具体实现细节

ClusterCluster Invoker作用
FailoverClusterFailoverClusterInvoker失败自动切换功能,默认
FailfastClusterFailfastClusterInvoker一次调用,失败异常
FailsafeClusterFailsafeClusterInvoker调用出错则日志记录
FailbackClusterFailbackClusterInvoker失败返空,定时重试2次
ForkingClusterForkingClusterInvoker一个任务并发调用,一个OK则OK
BroadcastClusterBroadcastClusterInvoker逐个调用invoker,全可用才可用
AvailableClusterAvailableClusterInvoker哪个能用就用那个
MergeableClusterMergeableClusterInvoker按组合并返回结果

7.2 智能容错之负载均衡

Dubbo中一般有4种负载均衡策略。

  1. RandomLoadBalance:加权随机,它的算法思想简单。假设有一组服务器 servers = [A, B, C],对应权重为 weights = [5, 3, 2],权重总和为10。现把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。默认实现
  2. LeastActiveLoadBalance:最少活跃数负载均衡,选择现在活跃调用数最少的提供者进行调用,活跃的调用数少说明它现在很轻松,而且活跃数都是从 0 加起来的,来一个请求活跃数+1,一个请求处理完成活跃数-1,所以活跃数少也能变相的体现处理的快。
  3. RoundRobinLoadBalance:加权轮询负载均衡,比如现在有两台服务器 A、B,轮询的调用顺序就是 A、B、A、B,如果加了权重,A 比B 的权重是2:1,那现在的调用顺序就是 A、A、B、A、A、B。
  4. ConsistentHashLoadBalance:一致性 Hash 负载均衡,将服务器的 IP 等信息生成一个 hash 值,将hash 值投射到圆环上作为一个节点,然后当 key 来查找的时候顺时针查找第一个大于等于这个 key 的 hash 值的节点。一般而言还会引入虚拟节点,使得数据更加的分散,避免数据倾斜压垮某个节点。如下图 Dubbo 默认搞了 160 个虚拟节点。

7.3 智能容错之服务目录

关于 服务目录Directory 你可以理解为是相同服务Invoker的集合,核心是RegistryDirectory类。具有三个功能。

  1. 从注册中心获得invoker列表。
  2. 监控着注册中心invoker的变化,invoker的上下线。
  3. 刷新invokers列表到服务目录。

7.4 智能容错之服务路由

服务路由其实就是路由规则,它规定了服务消费者可以调用哪些服务提供者。条件路由规则由两个条件组成,分别用于对服务消费者和提供者进行匹配。比如有这样一条规则:

host = 10.20.153.14 => host = 10.20.153.12

该条规则表示 IP 为 10.20.153.14 的服务消费者只可调用 IP 为 10.20.153.12 机器上的服务,不可调用其他机器上的服务。条件路由规则的格式如下:

[服务消费者匹配条件] => [服务提供者匹配条件]

如果服务消费者匹配条件为空,表示不对服务消费者进行限制。如果服务提供者匹配条件为空,表示对某些服务消费者禁用服务。

8、设计RPC

通读下Dubbo的大致实现方式后其实就可以依葫芦画瓢了,一个RPC框架大致需要下面这些东西:

  1. 服务的注册跟发现的搞一个吧,你可以用ZooKeeper或者Redis来实现。
  2. 接下来consumer发起请求的时候你的面向接口编程啊,用到动态代理来实现调用。
  3. 多个provider提供相同服务你的用到LoadBalance啊。
  4. 最终选择一个机器后你的约定好通信协议啊,如何进行序列化跟反序列化呢?
  5. 底层就用现成的高性能Netty框架 NIO模式实现呗。
  6. 服务开启后的有monitor啊。

PS :

感觉没啥特别好写的,因为人Dubbo官方文档啥都有,你说你英文看不懂,那中文总该看得懂了吧。

参考

Dubbo面试题:https://sowhat.blog.csdn.net/article/details/71191035
Adaptive讲解:https://blog.csdn.net/weixin_33967071/article/details/92608993 Dubbo视频:https://b23.tv/KVk0xo
Dubbo demo:https://mp.weixin.qq.com/s/FPbu8rFOHyTGROIV8XJeTA doExportUrlsFor1Protocol详解:https://www.cnblogs.com/hzhuxin/p/7993860.html


欢迎关注扫码关注微信公众号:互联网全栈架构,收取更多有价值的信息。



浏览 30
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报