平均来看,对某一个女孩子来说,追求者出现频率可当作是随机的,那两个追求者出现的时间间隔就可以用指数分布来表示。因此追求者出现的频率就服从泊松分布。另一方面,由于追求者的出现是随机的,女孩子心仪的对象就是随机出现的,这导致了女孩谈恋爱的时间是随机的,即其处理时间服从指数分布,女孩在一段时间内谈恋爱的频率也就服从泊松分布。为了将实际复杂的问题进行简化,我们做出下面几条理想化的假设:(1)追求者都是死心眼,一旦成了追求者就不会放弃,一直待在列队里,直到分手或者被拒绝。也就是说当列队中的对象没有被处理时,他就会排队等待处理。(2)女孩不会脚踏两只船,每次最多只和一个人谈恋爱(每次只处理一个请求)。(3)当女孩正在处理一个请求时,设其他追求者有绅士风度,不会骚扰她。(4)女孩处理列队里的请求时遵循先到先谈(First Come First Serve, FCFS)原则,遇到靠谱的就恋爱,遇到不靠谱的就拒绝,决定拒绝某人可能要经历一定时间。既然追求者出现的时间间隔和处理时间都服从指数分布,我们就分别用 a(t) 和 b(t) 表示二者的密度方程(density function):根据泊松分布的特性我们可以知道:追求者出现的时间间隔的平均值是 1/λ,处理时间的平均值是 1/μ, λ 指追求者出现的频率,μ 指的是女孩处理请求的频率 。
用排队论算出追求者平均等待时间
当追求者超过 1 个时,就会形成排队的状态,这时候我们可以引入马尔可夫链(Markov Chains)来分析这个问题:在上图中,每个圆圈代表排队系统的一个状态,其中的数字代表列队长度:当前追求者个数。在每个状态,每来一个追求者,系统就到了下一个状态(追求者的人数加 1),女孩谈完一次恋爱或者拒绝一个人,系统就回到了上一个状态(追求者的人数减 1,因为某个追求者被拒或者成了前男友)。用 p n 表示系统处于状态 n(姑娘的列队里有 n 个追求者)的概率,系统要达到一个稳定状态,必须要满足下面的递归方程:通过迭代法解这个等式,可以得出 p n 的表达式:另外注意到,对于这条马尔可夫链来说,各个状态的概率和应当为 1(因为包含了所有情况):p 0 + p 1 + ... + p n = 1 。结合上式,最终解得:有了概率,我们就可以计算追求者列队的平均长度了。随机变量 N 代表列队在稳定状态时追求者的数量,根据期望:化简可得:知道了这个女孩的追求者数量的期望值,我们还想知道平均每个追求者要等多久。为了解决这个小问题,我们得用排队论 (queueing theory)的 Little's formulas:W 就是追求者的平均等待时间(从进入列队到和女孩分手或被拒绝),结合上面的结果,不难得出: