ImageNet Classification with Deep Convolutional Neural Networks,引用75231次(AlexNet,点燃了深度学习的热潮,因此2012年被认为是深度学习元年,当然要十分感谢ImageNet和GPU的加持);
Learning internal representations by error-propagation & Learning representations by back-propagating errors,引用50716次(BP算法,殿堂级别的成果,几乎所有关于神经网络的文章都会用到BP算法);
Deep learning,引用33222次(“三巨头”关于深度学习的综述文章);
Dropout: a simple way to prevent neural networks from overfitting,引用24452次(Dropout是一种防止深度学习模型过拟合的正则化方法,目前已被Google申请专利,面对封锁,华为诺亚实验室开源了Disout算法,直接对标Google的Dropout);
Visualizing data using t-SNE,引用16957次(t-SNE是一种流形学习方法,用于数据降维和可视化)。
在机器学习领域还有一个泰斗级的人物Jürgen Schmidhuber,他的一篇文章Long short-term memory目前的引用量是40934次,是深度学习-循环神经网络(Recurrent Neural Network, RNN)中的重要成果。但是LeCun Y,Bengio Y和Hinton G在2015年发表在Nature上的文章Deep learning作者中没有Jürgen Schmidhuber,不过Schmidhuber在2015也发表了一篇关于深度学习的综述文章Deep learning in neural networks: An overview,目前的引用量是10917。 机器学习领域还有一些重要的成果,对应的文章也有不俗的引用量。比如:
一直被对比,从未被超越的Adam,目前的引用量是60604次;
使神经网络训练更快、更稳定的Batch normalization,目前的引用量是22986次;
避免深层网络训练时梯度消失或梯度爆炸的激活函数—线性整流函数ReLU(Rectified linear units improve restricted boltzmann machines),目前的引用量是11548次。
Zisserman在2014年发表的关于VGGNet的文章Very deep convolutional networks for large-scale image recognition,目前的引用量是48691次。Google在2015年发表的关于GoogLeNet的文章Going deeper with convolutions,目前的引用量是26353次。何凯明2016年的文章Deep residual learning for image recognition,提出的多达152层ResNet,目前的引用量是63253次。2016年提出的用于目标检测的Faster R-CNN,目前的引用量是24215次。
梳理一下通信和图像处理方面,读过的一些经典的,超过15000引用的论文。1. A Mathematical theory of communication 引用次数:78680评价:开创了信息论,直接奠定了通信的发展,大名鼎鼎的香农三定理和熵的概念就是在这篇文章中提出的。没有它,就没有WiFi和5G,也没有我们刷着知乎听着歌2. A combined coerner and edge detector引用次数:18167评价:提出了角点特征,能够检测图片中的角点、边缘和图片。是图像特征提取的代表作,是图像分割、匹配等的基础。3. Distinctive image features from scale-invariant keypoints引用次数:59561评价:大名鼎鼎的SIFT特征,具有尺度、方向、仿射不变性,和上一篇论文的Haris特征一起,成为图像特征提取的两个最重要技术。4. Object recognition from local scale-invariant features引用次数:20100评价:David Lowe的另一篇文章,说的是利用尺度不变特征来进行目标识别5. Compressed Sensing引用次数:27557评价:压缩感知的代表作之一,将采样和压缩过程结合起来同时进行,直接对信号的稀疏性进行感知。6. Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information引用次数:16700评价:压缩感知的另一篇代表作7. A new approach to linear filtering and prediction problems引用次数:35070评价:提出了著名的卡尔曼滤波。如果你没听说过卡尔曼滤波不要仅,但你一定点过外卖,打过滴滴,甚至美国阿波罗号上天也用过它,根据测量值和状态方程修正真实值,就是它干的事情,8. A computational approach to edge detection引用次数:35942评价:边缘检测的另一篇代表作9. Gradient-based learning applied to document recognition引用次数:32192评价:LeCun的经典论文,做过机器学习的都知道,没做过机器学习的也一般听说过MNIST数据集来源:远处群山(知乎)https://www.zhihu.com/question/433702668/answer/1622573162
Donoho D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306. 27000次引用
Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on information theory, 2006, 52(2): 489-509. 16000次引用
统计学习里大名鼎鼎的LASSO:
Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. 引用35000次
Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905. 引用16000次
Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on pattern analysis and machine intelligence, 1990, 12(7): 629-639. 引用15000次
图像去噪的又一神作,超级经典的全变差模型:
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259-268. 引用15000次
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. 58000次引用
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, 2005, 1: 886-893. 32000次引用
做图像恢复的人肯定都知道SSIM这个指标,出自这篇文章:
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612. 引用27000