视线估计实战,卧槽,我有一个大胆的想法!
点击上方“AI算法与图像处理”,选择加"星标"或“置顶”
重磅干货,第一时间送达
大家好,我是程序员啊潘。今天要分享一个有趣的实战项目——视线估计,一个相对小众的研究方向,但是未来大有可为。
相关应用
https://v.youku.com/v_show/id_XNDAzNzc3MjEzNg==.html?spm=a2h0k.11417342.soresults.dtitle
辅助驾驶(智能座舱):gaze在辅助驾驶上有两方面应用。一是检测驾驶员是否疲劳驾驶以及注意力是否集中。二是提供一些交互从而解放双手。
线下零售:我一直认为gaze在零售或者无人超市等领域大有可为,毕竟人的注意力某种程度上反映了其兴趣,可以提供大量的信息。但是我目前并没有看到相关的应用,包括Amazon Go。或许现阶段精度难以达到要求。我导师的公司倒是接过一个超市的项目,通过gaze行为做市场调研。但欧洲公司保密性较高,具体情况不得而知。
其他交互类应用如手机解锁、短视频特效等。
来源:https://zhuanlan.zhihu.com/p/112097446
算法原理和项目实战
好的,介绍了这么多,下面我们来实战一下,老规矩,先看效果
当然我想象中的效果应该是可以替换成下面的样子(本文并没有实现):
代码来源:https://github.com/1996scarlet/Laser-Eye
涉及到的知识点:
1、人脸检测
论文:https://arxiv.org/abs/1905.00641
项目代码:https://github.com/1996scarlet/faster-mobile-retinaface
2、人脸关键点检测
默认使用的是MobileNet-v2 version(1.4M)
可选的其他版本https://github.com/deepinx/deep-face-alignment【37M】
3、头部姿态估计
https://github.com/lincolnhard/head-pose-estimation
使用 dlib和 OpenCV实现头部姿态的估计
(实际使用的是insightface项目中的人脸关键点检测方法)
链接:https://github.com/deepinsight/insightface/tree/master/alignment/coordinateReg
insightface项目经常会更新一些好东西,非常值得持续关注
4、虹膜分割
论文:https://ieeexplore.ieee.org/document/8818661
本文提出了一种基于单目RGB相机的实时精确的三维眼球注视跟踪方法。我们的关键思想是训练一个深度卷积神经网络(DCNN),自动从输入图像中提取每只眼睛的虹膜和瞳孔像素。为了实现这一目标,我们结合Unet[1]和Squeezenet[2]的能力来训练一个高效的卷积神经网络进行像素分类。此外,我们在最大后验框架中跟踪三维眼睛注视状态,该框架在每一帧中顺序搜索最可能的三维眼睛注视状态。当眼睛眨眼时,眼球注视跟踪器会得到不准确的结果。为了提高眼睛注视跟踪器的鲁棒性和准确性,我们进一步扩展了卷积神经网络用于眼睛的近距离检测。我们的系统在台式电脑和智能手机上实时运行。我们已经在直播视频和网络视频上评估了我们的系统,我们的结果表明,该系统对于不同性别、种族、光照条件、姿势、形状和面部表情都是稳健和准确的。与Wang等人[3]的对比表明,我们的方法在使用单一RGB摄像头的3D眼球跟踪方面取得了先进水平。
测试代码:
#!/usr/bin/python3
# -*- coding:utf-8 -*-
from service.head_pose import HeadPoseEstimator
from service.face_alignment import CoordinateAlignmentModel
from service.face_detector import MxnetDetectionModel
from service.iris_localization import IrisLocalizationModel
import cv2
import numpy as np
from numpy import sin, cos, pi, arctan
from numpy.linalg import norm
import time
from queue import Queue
from threading import Thread
import sys
SIN_LEFT_THETA = 2 * sin(pi / 4)
SIN_UP_THETA = sin(pi / 6)
def calculate_3d_gaze(frame, poi, scale=256):
ends, pupils, centers = poi
eye_length = norm(starts - ends, axis=1)
ic_distance = norm(pupils - centers, axis=1)
zc_distance = norm(pupils - starts, axis=1)
s0 = (starts[:, 1] - ends[:, 1]) * pupils[:, 0]
s1 = (starts[:, 0] - ends[:, 0]) * pupils[:, 1]
s2 = starts[:, 0] * ends[:, 1]
s3 = starts[:, 1] * ends[:, 0]
delta_y = (s0 - s1 + s2 - s3) / eye_length / 2
delta_x = np.sqrt(abs(ic_distance**2 - delta_y**2))
delta = np.array((delta_x * SIN_LEFT_THETA,
delta_y * SIN_UP_THETA))
delta /= eye_length
pha = np.arcsin(delta)
# print(f"THETA:{180 * theta / pi}, PHA:{180 * pha / pi}")
# delta[0, abs(theta) < 0.1] = 0
# delta[1, abs(pha) < 0.03] = 0
inv_judge = zc_distance**2 - delta_y**2 < eye_length**2 / 4
inv_judge] *= -1
*= -1
delta *= scale
# cv2.circle(frame, tuple(pupil.astype(int)), 2, (0, 255, 255), -1)
# cv2.circle(frame, tuple(center.astype(int)), 1, (0, 0, 255), -1)
return theta, pha, delta.T
def draw_sticker(src, offset, pupils, landmarks,
blink_thd=0.22,
arrow_color=(0, 125, 255), copy=False):
if copy:
src = src.copy()
left_eye_hight = landmarks[33, 1] - landmarks[40, 1]
left_eye_width = landmarks[39, 0] - landmarks[35, 0]
right_eye_hight = landmarks[87, 1] - landmarks[94, 1]
right_eye_width = landmarks[93, 0] - landmarks[89, 0]
for mark in landmarks.reshape(-1, 2).astype(int):
tuple(mark), radius=1,
color=(0, 0, 255), thickness=-1)
if left_eye_hight / left_eye_width > blink_thd:
tuple(pupils[0].astype(int)),
arrow_color, 2)
if right_eye_hight / right_eye_width > blink_thd:
tuple(pupils[1].astype(int)),
arrow_color, 2)
return src
def main(video, gpu_ctx=-1):
cap = cv2.VideoCapture(video)
fd = MxnetDetectionModel("weights/16and32", 0, .6, gpu=gpu_ctx)
fa = CoordinateAlignmentModel('weights/2d106det', 0, gpu=gpu_ctx)
gs = IrisLocalizationModel("weights/iris_landmark.tflite")
hp = HeadPoseEstimator("weights/object_points.npy", cap.get(3), cap.get(4))
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (960, 540))
while True:
frame = cap.read()
if not ret:
break
bboxes = fd.detect(frame)
for landmarks in fa.get_landmarks(frame, bboxes, calibrate=True):
# calculate head pose
euler_angle = hp.get_head_pose(landmarks)
yaw, roll = euler_angle[:, 0]
eye_markers = np.take(landmarks, fa.eye_bound, axis=0)
eye_centers = np.average(eye_markers, axis=1)
# eye_centers = landmarks[[34, 88]]
# eye_lengths = np.linalg.norm(landmarks[[39, 93]] - landmarks[[35, 89]], axis=1)
eye_lengths = (landmarks[[39, 93]] - landmarks[[35, 89]])[:, 0]
iris_left = gs.get_mesh(frame, eye_lengths[0], eye_centers[0])
_ = gs.draw_pupil(iris_left, frame, thickness=1)
iris_right = gs.get_mesh(frame, eye_lengths[1], eye_centers[1])
_ = gs.draw_pupil(iris_right, frame, thickness=1)
pupils = np.array([pupil_left, pupil_right])
poi = landmarks[[35, 89]], landmarks[[39, 93]], pupils, eye_centers
pha, delta = calculate_3d_gaze(frame, poi)
if yaw > 30:
end_mean = delta[0]
elif yaw < -30:
end_mean = delta[1]
else:
end_mean = np.average(delta, axis=0)
if end_mean[0] < 0:
zeta = arctan(end_mean[1] / end_mean[0]) + pi
else:
zeta = arctan(end_mean[1] / (end_mean[0] + 1e-7))
# print(zeta * 180 / pi)
# print(zeta)
if roll < 0:
roll += 180
else:
roll -= 180
real_angle = zeta + roll * pi / 180
# real_angle = zeta
# print("end mean:", end_mean)
# print(roll, real_angle * 180 / pi)
R = norm(end_mean)
offset = R * cos(real_angle), R * sin(real_angle)
92]] = landmarks[[34, 88]] = eye_centers
# gs.draw_eye_markers(eye_markers, frame, thickness=1)
offset, pupils, landmarks)
frame = cv2.resize(frame, (960, 540))
out.write(frame)
cv2.resize(frame, (960, 540)))
# cv2.imshow('res', frame)
if cv2.waitKey(0) == ord('q'):
break
cap.release()
out.release()
if __name__ == "__main__":
video = "flame.mp4"
main(video)
注意事项:
环境配置:
1、官方并没有提供明确的依赖包和相应的版本,本人测试所用的环境(cpu版本)
mxnet 1.7.0
tensorflow 2.4.0
2、在运行时,显示图片需要按空格键,切换到下一个画面。
3、测试的视频在官方项目的asset文件夹下。
视线估计最终获得的结果包括
三个角度:pitch, yaw, roll
虹膜分割的结果,左右眼分割的结果
计算3维虹膜的值
代码来源:https://github.com/1996scarlet/Laser-Eye
最后
好的,到这里,今天的分享就结束了。
最后,希望大家能点一下“赞”、“在看”和分享到朋友圈,你的举手之劳,是我前进的动力!2021,我会努力分享更多的干货,做好内容!
下载1:何恺明顶会分享
在「AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析
下载2:终身受益的编程指南:Google编程风格指南
在「AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!
下载3 CVPR2020
在「AI算法与图像处理」公众号后台回复:CVPR2020,即可下载1467篇CVPR 2020论文 个人微信(如果没有备注不拉群!) 请注明:地区+学校/企业+研究方向+昵称
觉得不错就点亮在看吧