清晰了,STM32 HAL的超全知识总结
共 16998字,需浏览 34分钟
·
2022-01-09 21:36
来源:付斌综合自网络
ST 为开发者提供了非常方便的开发库:有标准外设库(SPL库)、HAL 库(Hardware Abstraction Layer,硬件抽象层库)、LL 库(Low-Layer,底层库)三种。前者是ST的老库已经停更了,后两者是ST现在主推的开发库。
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
GPIOx->BRR= GPIO_Pin;
}
voidHAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin,
GPIO_PinStatePinState)
{
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if(PinState!= GPIO_PIN_RESET)
{
GPIOx->BSRR= GPIO_Pin;
}
else
{
GPIOx->BSRR= (uint32_t)GPIO_Pin << 16;
}
}
工程创建
GPIO使用
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//收发模式
USART_Init(USART3, &USART_InitStructure); //初始化串口1
可以看到,要初始化一个串口,需要:
· 1、对六个位置进行赋值,
· 2、然后引用Init函数,
USART_InitStructure并不是一个全局结构体变量,而是只在函数内部的局部变量,初始化完成之后,USART_InitStructure就失去了作用。
UART_HandleTypeDef UART1_Handler;
右键查看结构体成员
typedef struct
{
USART_TypeDef *Instance; /*!< UART registers base address */
UART_InitTypeDef Init; /*!< UART communication parameters */
uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */
uint16_t TxXferSize; /*!< UART Tx Transfer size */
uint16_t TxXferCount; /*!< UART Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */
uint16_t RxXferSize; /*!< UART Rx Transfer size */
uint16_t RxXferCount; /*!< UART Rx Transfer Counter */
DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_UART_StateTypeDef State; /*!< UART communication state */
__IO uint32_t ErrorCode; /*!< UART Error code */
}UART_HandleTypeDef;
我们发现,与标准库不同的是,该成员不仅:
HAL_UART_Receive_IT(&UART1_Handler, (u8 *)aRxBuffer, RXBUFFERSIZE);
void HAL_UART_MspInit(UART_HandleTypeDef *huart);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
MSP: MCU Specific Package 单片机的具体方案
MSP是指和MCU相关的初始化,引用一下正点原子的解释,个人觉得说的很明白:我们要初始化一个串口,首先要设置和 MCU 无关的东西,例如波特率,奇偶校验,停止位等,这些参数设置和 MCU 没有任何关系,可以使用 STM32F1,也可以是 STM32F2/F3/F4/F7上的串口。而一个串口设备它需要一个 MCU 来承载,例如用 STM32F4 来做承载,PA9 做为发送,PA10 做为接收,MSP 就是要初始化 STM32F4 的 PA9,PA10,配置这两个引脚。所以 HAL驱动方式的初始化流程就是:
同样,MSP函数又可以配合句柄,达到非常强的移植性:
void HAL_UART_MspInit(UART_HandleTypeDef *huart);
入口参数仅仅需要一个串口句柄,这样就能看出句柄的方便。
类似于MSP函数,个人认为Callback函数主要帮助用户应用层的代码编写。
还是以USART为例,在标准库中,串口中断了以后,我们要先在中断中判断是否是接收中断,然后读出数据,顺便清除中断标志位,然后再是对数据的处理,这样如果我们在一个中断函数中写这么多代码,就会显得很混乱:
void USART3_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART3);//读取接收到的数据
/*数据处理区*/
}
}
}
而在HAL库中,进入串口中断后,直接由HAL库中断函数进行托管:
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&UART1_Handler);//调用HAL库中断处理公用函数
/***************省略无关代码****************/
}
HAL_UART_IRQHandler这个函数完成了判断是哪个中断(接收?发送?或者其他?),然后读出数据,保存至缓存区,顺便清除中断标志位等等操作。比如我提前设置了,串口每接收五个字节,我就要对这五个字节进行处理。在一开始我定义了一个串口接收缓存区:
/*HAL库使用的串口接收缓冲,处理逻辑由HAL库控制,接收完这个数组就会调用HAL_UART_RxCpltCallback进行处理这个数组*/
/*RXBUFFERSIZE=5*/
u8 aRxBuffer[RXBUFFERSIZE];
在初始化中,我在句柄里设置好了缓存区的地址,缓存大小(五个字节)
/*该代码在HAL_UART_Receive_IT函数中,初始化时会引用*/
huart->pRxBuffPtr = pData;//aRxBuffer
huart->RxXferSize = Size;//RXBUFFERSIZE
huart->RxXferCount = Size;//RXBUFFERSIZE
则在接收数据中,每接收完五个字节,HAL_UART_IRQHandler才会执行一次Callback函数:
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
在这个Callback回调函数中,我们只需要对这接收到的五个字节(保存在aRxBuffer[]中)进行处理就好了,完全不用再去手动清除标志位等操作。所以说Callback函数是一个应用层代码的函数,我们在一开始只设置句柄里面的各个参数,然后就等着HAL库把自己安排好的代码送到手中就可以了~
综上,就是HAL库的三个与标准库不同的地方之个人见解。个人觉得从这三个小点就可以看出HAL库的可移植性之强大,并且用户可以完全不去理会底层各个寄存器的操作,代码也更有逻辑性。但与此带来的是复杂的代码量,极慢的编译速度,略微低下的效率。看怎么取舍了。
说到STM32的HAL库,就不得不提STM32CubeMX,其作为一个可视化的配置工具,对于开发者来说,确实大大节省了开发时间。STM32CubeMX就是以HAL库为基础的,且目前仅支持HAL库及LL库!首先看一下,官方给出的HAL库的包含结构:
· 4.1 stm32f4xx.h主要包含STM32同系列芯片的不同具体型号的定义,是否使用HAL库等的定义,接着,其会根据定义的芯片信号包含具体的芯片型号的头文件:
#if defined(STM32F405xx)
#include "stm32f405xx.h"
#elif defined(STM32F415xx)
#include "stm32f415xx.h"
#elif defined(STM32F407xx)
#include "stm32f407xx.h"
#elif defined(STM32F417xx)
#include "stm32f417xx.h"
#else
#error "Please select first the target STM32F4xx device used in your application (in stm32f2xx.h file)"
#endif
紧接着,其会包含stm32f4xx_hal.h。
· 4.2 stm32f4xx_hal.h:stm32f4xx_hal.c/h 主要实现HAL库的初始化、系统滴答相关函数、及CPU的调试模式配置
· 4.3 stm32f4xx_hal_conf.h:该文件是一个用户级别的配置文件,用来实现对HAL库的裁剪,其位于用户文件目录,不要放在库目录中。
接下来对于HAL库的源码文件进行一下说明,HAL库文件名均以stm32f4xx_hal开头,后面加上_外设或者模块名(如:stm32f4xx_hal_adc.c):
· 4.4 库文件
stm32f4xx_hal_ppp.c/.h // 主要的外设或者模块的驱动源文件,包含了该外设的通用API
stm32f4xx_hal_ppp_ex.c/.h // 外围设备或模块驱动程序的扩展文件。这组文件中包含特定型号或者系列的芯片的特殊API。以及如果该特定的芯片内部有不同的实现方式,则该文件中的特殊API将覆盖_ppp中的通用API
stm32f4xx_hal.c/.h // 此文件用于HAL初始化,并且包含DBGMCU、重映射和基于systick的时间延迟等相关的API
· 4.5 其他库文件
用户级别文件:
stm32f4xx_hal_msp_template.c // 只有.c没有.h。它包含用户应用程序中使用的外设的MSP初始化和反初始化(主程序和回调函数)。使用者复制到自己目录下使用模板。
stm32f4xx_hal_conf_template.h // 用户级别的库配置文件模板。使用者复制到自己目录下使用
system_stm32f4xx.c // 此文件主要包含SystemInit()函数,该函数在刚复位及跳到main之前的启动过程中被调用。 它不在启动时配置系统时钟(与标准库相反)。 时钟的配置在用户文件中使用HAL API来完成。
startup_stm32f4xx.s // 芯片启动文件,主要包含堆栈定义,终端向量表等stm32f4xx_it.c/.h // 中断处理函数的相关实现
· 4.6 main.c/.h //
根据HAL库的命名规则,其API可以分为以下三大类:
· 初始化/反初始化函数:HAL_PPP_Init(), HAL_PPP_DeInit()
· IO 操作函数:HAL_PPP_Read(), HAL_PPP_Write(),HAL_PPP_Transmit(), HAL_PPP_Receive()
· 控制函数:HAL_PPP_Set (), HAL_PPP_Get ().
· 状态和错误: ** HAL_PPP_GetState (), HAL_PPP_GetError ().
注意:目前LL库是和HAL库捆绑发布的,所以在HAL库源码中,还有一些名为 stm32f2xx_ll_ppp的源码文件,这些文件就是新增的LL库文件。
使用CubeMX生产项目时,可以选择LL库
HAL库最大的特点就是对底层进行了抽象。在此结构下,用户代码的处理主要分为三部分:
· 处理外设句柄(实现用户功能)
· 处理MSP
· 处理各种回调函数
相关知识如下:
· (1) 外设句柄定义 用户代码的第一大部分:对于外设句柄的处理。HAL库在结构上,对每个外设抽象成了一个称为ppp_HandleTypeDef的结构体,其中ppp就是每个外设的名字。*所有的函数都是工作在ppp_HandleTypeDef指针之下。
1. 多实例支持:每个外设/模块实例都有自己的句柄。因此,实例资源是独立的
2. 外围进程相互通信:该句柄用于管理进程例程之间的共享数据资源。下面,以ADC为例
/**
* @brief ADC handle Structure definition
*/
typedef struct
{
ADC_TypeDef *Instance; /*!< Register base address */
ADC_InitTypeDef Init; /*!< ADC required parameters */
__IO uint32_t NbrOfCurrentConversionRank; /*!< ADC number of current conversion rank */
DMA_HandleTypeDef *DMA_Handle; /*!< Pointer DMA Handler */
HAL_LockTypeDef Lock; /*!< ADC locking object */
__IO uint32_t State; /*!< ADC communication state */
__IO uint32_t ErrorCode; /*!< ADC Error code */
}ADC_HandleTypeDef;
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length);
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc);
其中,带_IT的表示工作在中断模式下;带_DMA的工作在DMA模式下(注意:DMA模式下也是开中断的);什么都没带的就是轮询模式(没有开启中断的)。至于使用者使用何种方式,就看自己的选择了。 此外,新的HAL库架构下统一采用宏的形式对各种中断等进行配置(原来标准外设库一般都是各种函数)。针对每种外设主要由以下宏:
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/*Configure the SysTick to have interrupt in 1ms time basis*/
HAL_SYSTICK_Config(SystemCoreClock/1000U);
/*Configure the SysTick IRQ priority */
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0U);
/* Return function status */
return HAL_OK;
}
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,the HAL_SPI_TxCpltCallback should be implemented in the user file
*/
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart);
‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ END ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧
关注我的微信公众号,回复“加群”按规则加入技术交流群。
关注公众号,回复“pdf”获取程序员必读经典书单,一起编程一起进阶。
点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。