如何理解Inductive bias?

共 1940字,需浏览 4分钟

 ·

2022-05-24 10:10

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

来自 | 知乎

链接丨https://www.zhihu.com/question/264264203

仅作学术交流,如有侵权,请联系删除
  
提问

如何理解Inductive bias?

为什么说CNN的inductive bias符合围棋?是因为效果好,反过来就说符合吗?RNN的inductive bias又是什么呢?

高质量回答


LinT
NLP丑新
https://www.zhihu.com/question/264264203/answer/830077823

归纳偏置在机器学习中是一种很微妙的概念:在机器学习中,很多学习算法经常会对学习的问题做一些假设,这些假设就称为归纳偏置(Inductive Bias)。归纳偏置这个译名可能不能很好地帮助理解,不妨拆解开来看:
  • 归纳(Induction)是自然科学中常用的两大方法之一(归纳与演绎, induction and deduction),指的是从一些例子中寻找共性、泛化,形成一个比较通用的规则的过程;
  • 偏置(Bias)是指我们对模型的偏好。


因此,归纳偏置可以理解为,从现实生活中观察到的现象中归纳出一定的规则(heuristics),然后对模型做一定的约束,从而可以起到“模型选择”的作用,即从假设空间中选择出更符合现实规则的模型。其实,贝叶斯学习中的“先验(Prior)”这个叫法,可能比“归纳偏置”更直观一些。

归纳偏置在机器学习中几乎无处不可见。老生常谈的“奥卡姆剃刀”原理,即希望学习到的模型复杂度更低,就是一种归纳偏置。另外,还可以看见一些更强的一些假设:KNN中假设特征空间中相邻的样本倾向于属于同一类;SVM中假设好的分类器应该最大化类别边界距离;等等。

在深度学习方面也是一样。以神经网络为例,各式各样的网络结构/组件/机制往往就来源于归纳偏置。在卷积神经网络中,我们假设特征具有局部性(Locality)的特性,即当我们把相邻的一些特征放在一起,会更容易得到“解”;在循环神经网络中,我们假设每一时刻的计算依赖于历史计算结果;还有注意力机制,也是基于从人的直觉、生活经验归纳得到的规则。

在自然语言处理领域赫赫有名的word2vec,以及一些基于共现窗口的词嵌入方法,都是基于分布式假设:A word’s meaning is given by the words that frequently appear close-by. 这当然也可以看作是一种归纳偏置;一些自然语言理解的模型中加入解析树,也可以类似地理解。都是为了选择“更好”的模型。

李如
是【夕小瑶的卖萌屋】的rumor酱~
https://www.zhihu.com/question/264264203/answer/492568154

inductive bias是关于目标函数的必要假设

归纳偏置_百度百科

CNN的inductive bias应该是locality和spatial invariance,即空间相近的grid elements有联系而远的没有,和空间不变性(kernel权重共享)

RNN的inductive bias是sequentiality和time invariance,即序列顺序上的timesteps有联系,和时间变换的不变性(rnn权重共享)



下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 29
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报