一整套Java线上故障排查技巧,爱了!
共 10263字,需浏览 21分钟
·
2020-10-21 14:16
来源:fredal.xin/java-error-check
线上故障主要会包括 CPU、磁盘、内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍。
同时例如 jstack、jmap 等工具也是不囿于一个方面的问题的,基本上出问题就是 df、free、top 三连,然后依次 jstack、jmap 伺候,具体问题具体分析即可。
CPU
一般来讲我们首先会排查 CPU 方面的问题。CPU 异常往往还是比较好定位的。原因包括业务逻辑问题(死循环)、频繁 GC 以及上下文切换过多。
而最常见的往往是业务逻辑(或者框架逻辑)导致的,可以使用 jstack 来分析对应的堆栈情况。
①使用 jstack 分析 CPU 问题
我们先用 ps 命令找到对应进程的 pid(如果你有好几个目标进程,可以先用 top 看一下哪个占用比较高)。
接着用top -H -p pid来找到 CPU 使用率比较高的一些线程:
可以看到我们已经找到了 nid 为 0x42 的堆栈信息,接着只要仔细分析一番即可。
当然更常见的是我们对整个 jstack 文件进行分析,通常我们会比较关注 WAITING 和 TIMED_WAITING 的部分,BLOCKED 就不用说了。
②频繁 GC
当然我们还是会使用 jstack 来分析问题,但有时候我们可以先确定下 GC 是不是太频繁。
使用 jstat -gc pid 1000 命令来对 GC 分代变化情况进行观察,1000 表示采样间隔(ms),S0C/S1C、S0U/S1U、EC/EU、OC/OU、MC/MU 分别代表两个 Survivor 区、Eden 区、老年代、元数据区的容量和使用量。
YGC/YGT、FGC/FGCT、GCT 则代表 YoungGc、FullGc 的耗时和次数以及总耗时。
③上下文切换
磁盘
最后一列 %util 可以看到每块磁盘写入的程度,而 rrqpm/s 以及 wrqm/s 分别表示读写速度,一般就能帮助定位到具体哪块磁盘出现问题了。
内存
内存问题排查起来相对比 CPU 麻烦一些,场景也比较多。主要包括 OOM、GC 问题和堆外内存。
堆内内存
内存问题大多还都是堆内内存问题。表象上主要分为 OOM 和 Stack Overflow。
①OOM
JMV 中的内存不足,OOM 大致可以分为以下几种:
Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread
这个意思是没有足够的内存空间给线程分配 Java 栈,基本上还是线程池代码写的有问题,比如说忘记 shutdown,所以说应该首先从代码层面来寻找问题,使用 jstack 或者 jmap。
如果一切都正常,JVM 方面可以通过指定 Xss 来减少单个 thread stack 的大小。
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
这个意思是堆的内存占用已经达到 -Xmx 设置的最大值,应该是最常见的的 OOM 错误了。
解决思路仍然是先应该在代码中找,怀疑存在内存泄漏,通过 jstack 和 jmap 去定位问题。如果说一切都正常,才需要通过调整 Xmx 的值来扩大内存。
Caused by: java.lang.OutOfMemoryError: Meta space
这个意思是元数据区的内存占用已经达到 XX:MaxMetaspaceSize 设置的最大值,排查思路和上面的一致,参数方面可以通过 XX:MaxPermSize 来进行调整(这里就不说 1.8 以前的永久代了)。
②Stack Overflow
栈内存溢出,这个大家见到也比较多。
Exception in thread "main" java.lang.StackOverflowError
表示线程栈需要的内存大于 Xss 值,同样也是先进行排查,参数方面通过Xss来调整,但调整的太大可能又会引起 OOM。
③使用 JMAP 定位代码内存泄漏
通过 mat(Eclipse Memory Analysis Tools)导入 dump 文件进行分析,内存泄漏问题一般我们直接选 Leak Suspects 即可,mat 给出了内存泄漏的建议。
另外也可以选择 Top Consumers 来查看最大对象报告。和线程相关的问题可以选择 thread overview 进行分析。
日常开发中,代码产生内存泄漏是比较常见的事,并且比较隐蔽,需要开发者更加关注细节。
比如说每次请求都 new 对象,导致大量重复创建对象;进行文件流操作但未正确关闭;手动不当触发 GC;ByteBuffer 缓存分配不合理等都会造成代码 OOM。
另一方面,我们可以在启动参数中指定 -XX:+HeapDumpOnOutOfMemoryError 来保存 OOM 时的 dump 文件。
④GC 问题和线程
GC 问题除了影响 CPU 也会影响内存,排查思路也是一致的。一般先使用 jstat 来查看分代变化情况,比如 youngGC 或者 FullGC 次数是不是太多呀;EU、OU 等指标增长是不是异常呀等。
线程的话太多而且不被及时 GC 也会引发 OOM,大部分就是之前说的 unable to create new native thread。
堆外内存
如果碰到堆外内存溢出,那可真是太不幸了。首先堆外内存溢出表现就是物理常驻内存增长快,报错的话视使用方式都不确定。
如果由于使用 Netty 导致的,那错误日志里可能会出现 OutOfDirectMemoryError 错误,如果直接是 DirectByteBuffer,那会报 OutOfMemoryError: Direct buffer memory。
堆外内存溢出往往是和 NIO 的使用相关,一般我们先通过 pmap 来查看下进程占用的内存情况 pmap -x pid | sort -rn -k3 | head -30,这段意思是查看对应 pid 倒序前 30 大的内存段。
获取 dump 文件后可用 heaxdump 进行查看 hexdump -C filename | less,不过大多数看到的都是二进制乱码。
NMT 是 Java7U40 引入的 HotSpot 新特性,配合 jcmd 命令我们就可以看到具体内存组成了。
需要在启动参数中加入 -XX:NativeMemoryTracking=summary 或者 -XX:NativeMemoryTracking=detail,会有略微性能损耗。
可以看到 jcmd 分析出来的内存十分详细,包括堆内、线程以及 GC(所以上述其他内存异常其实都可以用 nmt 来分析),这边堆外内存我们重点关注 Internal 的内存增长,如果增长十分明显的话那就是有问题了。
此外在系统层面,我们还可以使用 strace 命令来监控内存分配 strace -f -e "brk,mmap,munmap" -p pid。
这边内存分配信息主要包括了 pid 和内存地址:
不过其实上面那些操作也很难定位到具体的问题点,关键还是要看错误日志栈,找到可疑的对象,搞清楚它的回收机制,然后去分析对应的对象。
比如 DirectByteBuffer 分配内存的话,是需要 Full GC 或者手动 system.gc 来进行回收的(所以最好不要使用-XX:+DisableExplicitGC)。
那么其实我们可以跟踪一下 DirectByteBuffer 对象的内存情况,通过 jmap -histo:live pid 手动触发 Full GC 来看看堆外内存有没有被回收。
如果被回收了,那么大概率是堆外内存本身分配的太小了,通过 -XX:MaxDirectMemorySize 进行调整。
如果没有什么变化,那就要使用 jmap 去分析那些不能被 GC 的对象,以及和 DirectByteBuffer 之间的引用关系了。
GC 问题
堆内内存泄漏总是和 GC 异常相伴。不过 GC 问题不只是和内存问题相关,还有可能引起 CPU 负载、网络问题等系列并发症,只是相对来说和内存联系紧密些,所以我们在此单独总结一下 GC 相关问题。
我们在 CPU 章介绍了使用 jstat 来获取当前 GC 分代变化信息。
而更多时候,我们是通过 GC 日志来排查问题的,在启动参数中加上 -verbose:gc,-XX:+PrintGCDetails,-XX:+PrintGCDateStamps,-XX:+PrintGCTimeStamps 来开启 GC 日志。
常见的 Young GC、Full GC 日志含义在此就不做赘述了。针对 GC 日志,我们就能大致推断出 youngGC 与 Full GC 是否过于频繁或者耗时过长,从而对症下药。
我们下面将对 G1 垃圾收集器来做分析,这边也建议大家使用 G1-XX:+UseG1GC。
①youngGC 过频繁
youngGC 频繁一般是短周期小对象较多,先考虑是不是 Eden 区/新生代设置的太小了,看能否通过调整 -Xmn、-XX:SurvivorRatio 等参数设置来解决问题。
如果参数正常,但是 youngGC 频率还是太高,就需要使用 Jmap 和 MAT 对 dump 文件进行进一步排查了。
②youngGC 耗时过长
耗时过长问题就要看 GC 日志里耗时耗在哪一块了。以 G1 日志为例,可以关注 Root Scanning、Object Copy、Ref Proc 等阶段。
Ref Proc 耗时长,就要注意引用相关的对象。Root Scanning 耗时长,就要注意线程数、跨代引用。
Object Copy 则需要关注对象生存周期。而且耗时分析它需要横向比较,就是和其他项目或者正常时间段的耗时比较。
③触发 Full GC
G1 中更多的还是 mixedGC,但 mixedGC 可以和 youngGC 思路一样去排查。
触发 Full GC 了一般都会有问题,G1 会退化使用 Serial 收集器来完成垃圾的清理工作,暂停时长达到秒级别,可以说是半跪了。
FullGC 的原因可能包括以下这些,以及参数调整方面的一些思路:
并发阶段失败:在并发标记阶段,MixGC 之前老年代就被填满了,那么这时候 G1 就会放弃标记周期。
这种情况,可能就需要增加堆大小,或者调整并发标记线程数 -XX:ConcGCThreads。
晋升失败:在 GC 的时候没有足够的内存供存活/晋升对象使用,所以触发了 Full GC。
这时候可以通过 -XX:G1ReservePercent 来增加预留内存百分比,减少 -XX:InitiatingHeapOccupancyPercent 来提前启动标记,-XX:ConcGCThreads 来增加标记线程数也是可以的。
大对象分配失败:大对象找不到合适的 Region 空间进行分配,就会进行 Full GC,这种情况下可以增大内存或者增大 -XX:G1HeapRegionSize。
程序主动执行 System.gc():不要随便写就对了。
另外,我们可以在启动参数中配置 -XX:HeapDumpPath=/xxx/dump.hprof 来 dump fullGC 相关的文件,并通过 jinfo 来进行 GC 前后的 dump:
jinfo -flag +HeapDumpBeforeFullGC pid
jinfo -flag +HeapDumpAfterFullGC pid
网络
读写超时:readTimeout/writeTimeout,有些框架叫做 so_timeout 或者 socketTimeout,均指的是数据读写超时。
注意这边的超时大部分是指逻辑上的超时。soa 的超时指的也是读超时。读写超时一般都只针对客户端设置。
连接超时:connectionTimeout,客户端通常指与服务端建立连接的最大时间。
服务端这边 connectionTimeout 就有些五花八门了,Jetty 中表示空闲连接清理时间,Tomcat 则表示连接维持的最大时间。
其他:包括连接获取超时 connectionAcquireTimeout 和空闲连接清理超时 idleConnectionTimeout。多用于使用连接池或队列的客户端或服务端框架。
TCP 队列溢出是个相对底层的错误,它可能会造成超时、RST 等更表层的错误。因此错误也更隐蔽,所以我们单独说一说。
syns queue(半连接队列)
accept queue(全连接队列)
netstat 命令,执行 netstat -s | egrep "listen|LISTEN":
ss 命令,执行 ss -lnt:
tcpdump -i en0 tcp -w xxx.cap,en0 表示监听的网卡:
接下来我们通过 wireshark 打开抓到的包,可能就能看到如下图所示,红色的就表示 RST 包了。
用 ss 命令会更快 ss -ant | awk '{++S[$1]} END {for(a in S) print a, S[a]}':
这种情况可以在服务端做一些内核参数调优:
#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭
net.ipv4.tcp_tw_reuse = 1
#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭
net.ipv4.tcp_tw_recycle = 1