SpringBoot 项目使用 Redis 对用户 IP 进行接口限流

Java专栏

共 17057字,需浏览 35分钟

 ·

2023-07-27 08:11

胖虎和朋友原创的视频教程有兴趣的可以看看


(文末附课程大纲)


👏2023 最新,Java成神之路,架构视频(点击查看)


😉超全技术栈的Java入门+进阶+实战!(点击查看)


一、思路

使用接口限流的主要目的在于提高系统的稳定性,防止接口被恶意打击(短时间内大量请求)。

比如要求某接口在1分钟内请求次数不超过1000次,那么应该如何设计代码呢?

下面讲两种思路,如果想看代码可直接翻到后面的代码部分。

1.1 固定时间段(旧思路)

1.1.1 思路描述

该方案的思路是:使用Redis记录固定时间段内某用户IP访问某接口的次数,其中:

  • Redis的key:用户IP + 接口方法名
  • Redis的value:当前接口访问次数。

当用户在近期内第一次访问该接口时,向Redis中设置一个包含了用户IP和接口方法名的key,value的值初始化为1(表示第一次访问当前接口)。同时,设置该key的过期时间(比如为60秒)。

基于 Spring Boot + MyBatis Plus + Vue 3.2 + Vite + Element Plus 实现的前后端分离博客,包含后台管理系统,支持文章、分类、标签管理、仪表盘等功能。

  • GitHub 地址:https://github.com/weiwosuoai/WeBlog
  • Gitee 地址:https://gitee.com/AllenJiang/WeBlog

   

之后,只要这个key还未过期,用户每次访问该接口都会导致value自增1次。

用户每次访问接口前,先从Redis中拿到当前接口访问次数,如果发现访问次数大于规定的次数(如超过1000次),则向用户返回接口访问失败的标识。

图片
1.1.2 思路缺陷

该方案的缺点在于,限流时间段是固定的。

比如要求某接口在1分钟内请求次数不超过1000次,观察以下流程:

图片

图片

可以发现,00:59和01:01之间仅仅间隔了2秒,但接口却被访问了1000+999=1999次,是限流次数(1000次)的2倍!

所以在该方案中,限流次数的设置可能不起作用,仍然可能在短时间内造成大量访问。

1.2 滑动窗口(新思路)

1.2.1 思路描述

为了避免出现方案1中由于键过期导致的短期访问量增大的情况,我们可以改变一下思路,也就是把固定的时间段改成动态的:

假设某个接口在10秒内只允许访问5次。用户每次访问接口时,记录当前用户访问的时间点(时间戳),并计算前10秒内用户访问该接口的总次数。如果总次数大于限流次数,则不允许用户访问该接口。这样就能保证在任意时刻用户的访问次数不会超过1000次。

如下图,假设用户在0:19时间点访问接口,经检查其前10秒内访问次数为5次,则允许本次访问。

图片

假设用户0:20时间点访问接口,经检查其前10秒内访问次数为6次(超出限流次数5次),则不允许本次访问。

图片
1.2.2 Redis部分的实现

1)选用何种 Redis 数据结构

首先是需要确定使用哪个Redis数据结构。用户每次访问时,需要用一个key记录用户访问的时间点,而且还需要利用这些时间点进行范围检查。

2)为何选择 zSet 数据结构

为了能够实现范围检查,可以考虑使用Redis中的zSet有序集合。

添加一个zSet元素的命令如下:

ZADD [key] [score] [member]

它有一个关键的属性score,通过它可以记录当前member的优先级。

于是我们可以把score设置成用户访问接口的时间戳,以便于通过score进行范围检查。key则记录用户IP和接口方法名,至于member设置成什么没有影响,一个member记录了用户访问接口的时间点。因此member也可以设置成时间戳。

3)zSet 如何进行范围检查(检查前几秒的访问次数)

思路是,把特定时间间隔之前的member都删掉,留下的member就是时间间隔之内的总访问次数。然后统计当前key中的member有多少个即可。

① 把特定时间间隔之前的member都删掉。

zSet有如下命令,用于删除score范围在[min~max]之间的member:

Zremrangebyscore [key] [min] [max]

假设限流时间设置为5秒,当前用户访问接口时,获取当前系统时间戳为currentTimeMill,那么删除的score范围可以设置为:

min = 0
max = currentTimeMill - 5 * 1000

相当于把5秒之前的所有member都删除了,只留下前5秒内的key。

② 统计特定key中已存在的member有多少个。

zSet有如下命令,用于统计某个key的member总数:

 ZCARD [key]

统计的key的member总数,就是当前接口已经访问的次数。如果该数目大于限流次数,则说明当前的访问应被限流。

二、代码实现

主要是使用注解 + AOP的形式实现。

基于 Spring Boot + MyBatis Plus + Vue 3.2 + Vite + Element Plus 实现的前后端分离博客,包含后台管理系统,支持文章、分类、标签管理、仪表盘等功能。

  • GitHub 地址:https://github.com/weiwosuoai/WeBlog
  • Gitee 地址:https://gitee.com/AllenJiang/WeBlog

   

2.1 固定时间段思路

使用了lua脚本。

  • 参考:https://blog.csdn.net/qq_43641418/article/details/127764462
2.1.1 限流注解
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface RateLimiter {

    /**
     * 限流时间,单位秒
     */
    int time() default 5;

    /**
     * 限流次数
     */
    int count() default 10;
}
2.1.2 定义lua脚本

resources/lua下新建limit.lua

-- 获取redis键
local key = KEYS[1]
-- 获取第一个参数(次数)
local count = tonumber(ARGV[1])
-- 获取第二个参数(时间)
local time = tonumber(ARGV[2])
-- 获取当前流量
local current = redis.call('get', key);
-- 如果current值存在,且值大于规定的次数,则拒绝放行(直接返回当前流量)
if current and tonumber(current) > count then
    return tonumber(current)
end
-- 如果值小于规定次数,或值不存在,则允许放行,当前流量数+1  (值不存在情况下,可以自增变为1)
current = redis.call('incr', key);
-- 如果是第一次进来,那么开始设置键的过期时间。
if tonumber(current) == 1 then 
    redis.call('expire', key, time);
end
-- 返回当前流量
return tonumber(current)
2.1.3 注入Lua执行脚本

关键代码是limitScript()方法

@Configuration
public class RedisConfig {

    @Bean
    public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();
        redisTemplate.setConnectionFactory(connectionFactory);
        // 使用Jackson2JsonRedisSerialize 替换默认序列化(默认采用的是JDK序列化)
        Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
        return redisTemplate;
    }


    /**
     * 解析lua脚本的bean
     */
    @Bean("limitScript")
    public DefaultRedisScript<Long> limitScript() {
        DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
        redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("lua/limit.lua")));
        redisScript.setResultType(Long.class);
        return redisScript;
    }
}
2.1.3 定义Aop切面类
@Slf4j
@Aspect
@Component
public class RateLimiterAspect {
 @Autowired
    private RedisTemplate redisTemplate;
    @Autowired
    private RedisScript<Long> limitScript;

 @Before("@annotation(rateLimiter)")
    public void doBefore(JoinPoint point, RateLimiter rateLimiter) throws Throwable {
        int time = rateLimiter.time();
        int count = rateLimiter.count();

        String combineKey = getCombineKey(rateLimiter.type(), point);
        List<String> keys = Collections.singletonList(combineKey);
        try {
            Long number = (Long) redisTemplate.execute(limitScript, keys, count, time);
            // 当前流量number已超过限制,则抛出异常
            if (number == null || number.intValue() > count) {
             throw new RuntimeException("访问过于频繁,请稍后再试");
            }
            log.info("[limit] 限制请求数'{}',当前请求数'{}',缓存key'{}'", count, number.intValue(), combineKey);
        } catch (Exception ex) {
            ex.printStackTrace();
            throw new RuntimeException("服务器限流异常,请稍候再试");
        }
    }
    
    /**
     * 把用户IP和接口方法名拼接成 redis 的 key
     * @param point 切入点
     * @return 组合key
     */
    private String getCombineKey(JoinPoint point) {
        StringBuilder sb = new StringBuilder("rate_limit:");
        ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
        HttpServletRequest request = attributes.getRequest();
        sb.append( Utils.getIpAddress(request) );
        
        MethodSignature signature = (MethodSignature) point.getSignature();
        Method method = signature.getMethod();
        Class<?> targetClass = method.getDeclaringClass();
        // keyPrefix + "-" + class + "-" + method
        return sb.append("-").append( targetClass.getName() )
                .append("-").append(method.getName()).toString();
    }
}

2.2 滑动窗口思路

2.2.1 限流注解
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface RateLimiter {

    /**
     * 限流时间,单位秒
     */
    int time() default 5;

    /**
     * 限流次数
     */
    int count() default 10;
}
2.2.2 定义Aop切面类
@Slf4j
@Aspect
@Component
public class RateLimiterAspect {

    @Autowired
    private RedisTemplate redisTemplate;

    /**
     * 实现限流(新思路)
     * @param point
     * @param rateLimiter
     * @throws Throwable
     */
    @SuppressWarnings("unchecked")
    @Before("@annotation(rateLimiter)")
    public void doBefore(JoinPoint point, RateLimiter rateLimiter) throws Throwable {
        // 在 {time} 秒内仅允许访问 {count} 次。
        int time = rateLimiter.time();
        int count = rateLimiter.count();
        // 根据用户IP(可选)和接口方法,构造key
        String combineKey = getCombineKey(rateLimiter.type(), point);
        
        // 限流逻辑实现
        ZSetOperations zSetOperations = redisTemplate.opsForZSet();
        // 记录本次访问的时间结点
        long currentMs = System.currentTimeMillis();
        zSetOperations.add(combineKey, currentMs, currentMs);
        // 这一步是为了防止member一直存在于内存中
        redisTemplate.expire(combineKey, time, TimeUnit.SECONDS);
        // 移除{time}秒之前的访问记录(滑动窗口思想)
        zSetOperations.removeRangeByScore(combineKey, 0, currentMs - time * 1000);
        
        // 获得当前窗口内的访问记录数
        Long currCount = zSetOperations.zCard(combineKey);
        // 限流判断
        if (currCount > count) {
            log.error("[limit] 限制请求数'{}',当前请求数'{}',缓存key'{}'", count, currCount, combineKey);
            throw new RuntimeException("访问过于频繁,请稍后再试!");
        }
    }

    /**
     * 把用户IP和接口方法名拼接成 redis 的 key
     * @param point 切入点
     * @return 组合key
     */
    private String getCombineKey(JoinPoint point) {
        StringBuilder sb = new StringBuilder("rate_limit:");
        ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
        HttpServletRequest request = attributes.getRequest();
        sb.append( Utils.getIpAddress(request) );
        
        MethodSignature signature = (MethodSignature) point.getSignature();
        Method method = signature.getMethod();
        Class<?> targetClass = method.getDeclaringClass();
        // keyPrefix + "-" + class + "-" + method
        return sb.append("-").append( targetClass.getName() )
                .append("-").append(method.getName()).toString();
    }
}

来源:blog.csdn.net/weixin_44213308/article/details/111151350

   

         

胖虎联合两位大佬朋友,一位是知名培训机构讲师和科大讯飞架构,联合打造了《Java架构师成长之路》的视频教程。完全对标外面2万左右的培训课程。

除了基本的视频教程之外,还提供了超详细的课堂笔记,以及源码等资料包..


课程阶段:

  1. Java核心 提升阅读源码的内功心法
  2. 深入讲解企业开发必备技术栈,夯实基础,为跳槽加薪增加筹码
  3. 分布式架构设计方法论。为学习分布式微服务做铺垫
  4. 学习NetFilx公司产品,如Eureka、Hystrix、Zuul、Feign、Ribbon等,以及学习Spring Cloud Alibabba体系
  5. 微服务架构下的性能优化
  6. 中间件源码剖析
  7. 元原生以及虚拟化技术
  8. 从0开始,项目实战 SpringCloud Alibaba电商项目

点击下方超链接查看详情(或者点击文末阅读原文):

(点击查看)  2023年,最新Java架构师成长之路 视频教程!

以下是课程大纲,大家可以双击打开原图查看

浏览 23
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报