darknet-mini:带注释的darknet简化版,助你深入理解YOLO
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
AI编辑:我是小将
本文作者:陈训教
https://github.com/ChenCVer/darknet
本文已由原作者授权,不得擅自二次转载
2019年就萌生一个想法,想深入研究一个深度学习框架,从code上将这个黑盒子的神秘面纱揭开,后续由于工作太忙,没有太多精力投入,从2020年8月份开始,诸多工作接近尾声,开始想投入一段时间研究一个底层框架。对比了多个框架,发现darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。真正可以对神经网络的组件一探究竟,是提高自己对深度学习有效范本。
本人对darknet的解读,为期接近3个月时间,从2020年8月5日到至今(10月23日),期间几乎查遍了CSDN,知乎,github所有能看到关于darknet的解读资源,这里特别感谢github上:
https://github.com/hgpvision/darknet https://github.com/BBuf/Darknet
期间也和他们私底下有过诸多交流。此外,也感谢那些微信上的联系人,经过他们的交流,使得让我疑惑的很多问题逐渐变得清晰起来。
由于darknet代码整个工程量还是很大的,后期,为了方便朋友们快速简单了解darknet整个框架思想,我写了一个darknet-mini版本,整个代码只实现了所有和分类网络相关的train部分。一律去除了其他seg,det,rnn,lstm等部分。代码见:https://github.com/ChenCVer/darknet-mini
很多朋友希望我也能出一个darknet的解读系列,后来我想了想,我的很多解读其实都放在代码中了(后期我会出一个详尽的解读系列,继续发表在本公众号),在代码中有详尽的解析。对于一些特别需要用画图的形式才能说明的,我也画了图,比如,darknet关于配置解读这块,最终形成的数据结构如下(该图片的ppt格式文件在files文件夹下的code_analysis_files的1.cfg analysis中):
再比如关于img2col也画了详细的说明图如下(该图片的ppt格式文件放在files文件夹下的code_analysis_files的2.im2col中,为了方便朋友们能debug中间过程,我也同时写了im2col对应的pyhton代码,放在同一个文件夹下):
关于darknet的数据加载机制,由于在整个代码中要想清晰知道data的load过程已经最终将各个线程的数据拼装在一个内存空间中,我也单独将这一部分代码从整个工程代码中抽取出来,并用随机数模拟这个过程。代码可以直接运行查看(代码放在:files/code_analysis_files/4.data load analysis)。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~