优化器怎么选?计算机视觉研究院教你选择适合不同项目的优化器
小白学视觉
共 3683字,需浏览 8分钟
·
2022-07-13 16:00
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
具体而言,这篇文章提出基于以下 3 个问题来选择优化器:
找到相关的研究论文,开始时使用相同的优化器;
查看表 1,并一一对照自己所用数据集的属性以及不同优化器的优缺点;
根据可用资源调整优化器。
上图显示了由于优化器不同,模型性能可能会差异很大。
选择优化器的问题在于没有一个可以解决所有问题的单一优化器。实际上,优化器的性能高度依赖于设置。所以根本问题是:「哪种优化器最适合自身项目的特点?」
下文就围绕这个问题分两部分展开,第一部分简要介绍常用的优化器,第二部分讲述「三步选择法」,帮助用户为自己的机器学习项目挑选出最佳优化器。
在随机梯度下降算法(SGD)中,优化器基于小批量估计梯度下降最快的方向,并朝该方向迈出一步。由于步长固定,因此 SGD 可能很快停滞在平稳区(plateaus)或者局部最小值上。
类似的数据集和任务的 SOTA 结果是什么?
使用了哪些优化器?
为什么使用这些优化器?
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论