SpringBoot @Async异步注解上下文透传
共 21160字,需浏览 43分钟
·
2021-07-09 14:55
上一篇文章说到,之前使用了@Async注解,子线程无法获取到上下文信息,导致流量无法打到灰度,然后改成 线程池的方式,每次调用异步调用的时候都手动透传 上下文(硬编码)解决了问题。
后面查阅了资料,找到了方案不用每次硬编码,来上下文透传数据了。
方案一:
继承线程池,重写相应的方法,透传上下文。
方案二:(推荐)
线程池ThreadPoolTaskExecutor,有一个TaskDecorator装饰器,实现这个接口,透传上下文。
方案一:继承线程池,重写相应的方法,透传上下文。
1、ThreadPoolTaskExecutor spring封装的线程池
@Bean(ExecutorConstant.simpleExecutor_3)
public Executor asyncExecutor3() {
MyThreadPoolTaskExecutor taskExecutor = new MyThreadPoolTaskExecutor();
taskExecutor.setCorePoolSize(corePoolSize);
taskExecutor.setMaxPoolSize(maxPoolSize);
taskExecutor.setQueueCapacity(queueCapacity);
taskExecutor.setThreadNamePrefix(threadNamePrefix_3);
taskExecutor.initialize();
return taskExecutor;
}
//------- 继承父类 重写对应的方法 start
class MyCallable<T> implements Callable<T> {
private Callable<T> task;
private RequestAttributes context;
public MyCallable(Callable<T> task, RequestAttributes context) {
this.task = task;
this.context = context;
}
@Override
public T call() throws Exception {
if (context != null) {
RequestContextHolder.setRequestAttributes(context);
}
try {
return task.call();
} finally {
RequestContextHolder.resetRequestAttributes();
}
}
}
class MyThreadPoolTaskExecutor extends ThreadPoolTaskExecutor{
@Override
public <T> Future<T> submit(Callable<T> task) {
return super.submit(new MyCallable(task, RequestContextHolder.currentRequestAttributes()));
}
@Override
public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
return super.submitListenable(new MyCallable(task, RequestContextHolder.currentRequestAttributes()));
}
}
//------- 继承父类 重写对应的方法 end
1、MyCallable是继承Callable,创建MyCallable对象的时候已经把Attributes对象赋值给属性context了(创建MyCallable对象的时候因为实在当前主线程创建的,所以是能获取到请求的Attributes),在执行call方法前,先执行了RequestContextHolder.setRequestAttributes(context); 【把这个MyCallable对象的属性context 设置到setRequestAttributes中】 所以在执行具体业务时,当前线程(子线程)就能取得主线程的Attributes
2、MyThreadPoolTaskExecutor类是继承了ThreadPoolTaskExecutor 重写了submit和submitListenable方法
为什么是重写submit和submitListenable这两个方法?
@Async AOP源码的方法位置是在:AsyncExecutionInterceptor.invoke
doSubmit方法能看出来
无返回值调用的是线程池方法:submit()
有返回值,根据不同的返回类型也知道:
返回值类型是:Future.class 调用的是方法:submit()
返回值类型是:ListenableFuture.class 调用的方法是:submitListenable(task)
返回值类型是:CompletableFuture.class调用的是CompletableFuture.supplyAsync这个在异步注解中暂时用不上的,就不考虑重写了。
public Object invoke(final MethodInvocation invocation) throws Throwable {
Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);
Method specificMethod = ClassUtils.getMostSpecificMethod(invocation.getMethod(), targetClass);
final Method userDeclaredMethod = BridgeMethodResolver.findBridgedMethod(specificMethod);
AsyncTaskExecutor executor = determineAsyncExecutor(userDeclaredMethod);
if (executor == null) {
throw new IllegalStateException(
"No executor specified and no default executor set on AsyncExecutionInterceptor either");
}
Callable<Object> task = () -> {
try {
Object result = invocation.proceed();
if (result instanceof Future) {
return ((Future<?>) result).get();
}
}
catch (ExecutionException ex) {
handleError(ex.getCause(), userDeclaredMethod, invocation.getArguments());
}
catch (Throwable ex) {
handleError(ex, userDeclaredMethod, invocation.getArguments());
}
return null;
};
return doSubmit(task, executor, invocation.getMethod().getReturnType());
}
@Nullable
protected Object doSubmit(Callable<Object> task, AsyncTaskExecutor executor, Class<?> returnType) {
if (CompletableFuture.class.isAssignableFrom(returnType)) {
return CompletableFuture.supplyAsync(() -> {
try {
return task.call();
}
catch (Throwable ex) {
throw new CompletionException(ex);
}
}, executor);
}
else if (ListenableFuture.class.isAssignableFrom(returnType)) {
return ((AsyncListenableTaskExecutor) executor).submitListenable(task);
}
else if (Future.class.isAssignableFrom(returnType)) {
return executor.submit(task);
}
else {
executor.submit(task);
return null;
}
}
2、ThreadPoolExecutor 原生线程池
ThreadPoolExecutor线程池代码如下:
//------- ThreadPoolExecutor 继承父类 重写对应的方法 start
class MyRunnable implements Runnable {
private Runnable runnable;
private RequestAttributes context;
public MyRunnable(Runnable runnable, RequestAttributes context) {
this.runnable = runnable;
this.context = context;
}
@Override
public void run() {
if (context != null) {
RequestContextHolder.setRequestAttributes(context);
}
try {
runnable.run();
} finally {
RequestContextHolder.resetRequestAttributes();
}
}
}
class MyThreadPoolExecutor extends ThreadPoolExecutor{
@Override
public void execute(Runnable command) {
if(!(command instanceof MyRunnable)){
command = new MyRunnable(command,RequestContextHolder.currentRequestAttributes())
}
super.execute(command);
}
public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
}
public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
}
public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, handler);
}
public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
}
}
//------- ThreadPoolExecutor 继承父类 重写对应的方法 end
像ThreadPoolExecutor主要重写execute方法,在启动新线程的时候先把Attributes取到放到MyRunnable对象的一个属性中,MyRunnable在具体执行run方法的时候,把属性Attributes赋值到子线程中,当run方法执行完了在把Attributes清空掉。
为什么只要重写了execute方法就可以了?
ThreadPoolExecutor大家都知道主要是由submit和execute方法来执行的。
看ThreadPoolExecutor类的submit具体执行方法是由父类AbstractExecutorService#submit来实现。
具体代码在下面贴出来了,可以看到submit实际上最后调用的还是execute方法,所以我们重写execute方法就好了。
submit方法路径及源码:
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
实现TaskDecorator接口,把实现类设置到taskExecutor.setTaskDecorator(new MyTaskDecorator());
//------- 实现TaskDecorator 接口 start
@Bean(ExecutorConstant.simpleExecutor_4)
public Executor asyncExecutor4() {
MyThreadPoolTaskExecutor taskExecutor = new MyThreadPoolTaskExecutor();
taskExecutor.setCorePoolSize(corePoolSize);
taskExecutor.setMaxPoolSize(maxPoolSize);
taskExecutor.setQueueCapacity(queueCapacity);
taskExecutor.setThreadNamePrefix(threadNamePrefix_4);
taskExecutor.setTaskDecorator(new MyTaskDecorator());
taskExecutor.initialize();
return taskExecutor;
}
class MyTaskDecorator implements TaskDecorator{
@Override
public Runnable decorate(Runnable runnable) {
try {
RequestAttributes attributes = RequestContextHolder.getRequestAttributes();
return () -> {
try {
RequestContextHolder.setRequestAttributes(attributes);
runnable.run();
} finally {
RequestContextHolder.resetRequestAttributes();
}
};
} catch (IllegalStateException e) {
return runnable;
}
}
}
//------- 实现TaskDecorator 接口 end
为什么设置了setTaskDecorator就能实现透传数据了?
主要还是看taskExecutor.initialize()方法,主要是重写了ThreadPoolExecutor的execute方法,用装饰器模式 增强了Runnable接口,源代码如下:
@Nullable
private ThreadPoolExecutor threadPoolExecutor;
//初始化方法
public void initialize() {
if (logger.isDebugEnabled()) {
logger.debug("Initializing ExecutorService" + (this.beanName != null ? " '" + this.beanName + "'" : ""));
}
if (!this.threadNamePrefixSet && this.beanName != null) {
setThreadNamePrefix(this.beanName + "-");
}
this.executor = initializeExecutor(this.threadFactory, this.rejectedExecutionHandler);
}
@Override
protected ExecutorService initializeExecutor(
ThreadFactory threadFactory, RejectedExecutionHandler rejectedExecutionHandler) {
BlockingQueue<Runnable> queue = createQueue(this.queueCapacity);
ThreadPoolExecutor executor;
//判断是否设置了,taskDecorator装饰器
if (this.taskDecorator != null) {
executor = new ThreadPoolExecutor(
this.corePoolSize, this.maxPoolSize, this.keepAliveSeconds, TimeUnit.SECONDS,
queue, threadFactory, rejectedExecutionHandler) {
@Override
public void execute(Runnable command) {
//执行装饰器方法包装Runnable接口
Runnable decorated = taskDecorator.decorate(command);
if (decorated != command) {
decoratedTaskMap.put(decorated, command);
}
super.execute(decorated);
}
};
}
else {
executor = new ThreadPoolExecutor(
this.corePoolSize, this.maxPoolSize, this.keepAliveSeconds, TimeUnit.SECONDS,
queue, threadFactory, rejectedExecutionHandler);
}
if (this.allowCoreThreadTimeOut) {
executor.allowCoreThreadTimeOut(true);
}
//把初始化好的ThreadPoolExecutor线程池赋值给 当前类属性threadPoolExecutor
this.threadPoolExecutor = executor;
return executor;
}
无论是方案1还是方案2,原理都是先在当前线程获取到Attributes,然后把Attributes赋值到Runnable的一个属性中,在起一个子线程后,具体执行run方法的时候,把Attributes设置给当子线程,当run方法执行完了,在清空Attributes。
方案2实现比较优雅,所以推荐使用它。
出处:cnblogs.com/x-kq/p/14911497.html
关注GitHub今日热榜,专注挖掘好用的开发工具,致力于分享优质高效的工具、资源、插件等,助力开发者成长!
点个在看,你最好看