211读者一周面7家大厂,收割5个大数据offer...

程序源代码

共 3207字,需浏览 7分钟

 ·

2021-03-29 11:55

点击上方 "大数据肌肉猿"关注, 星标一起成长

后台回复【加群】,进入高质量学习交流群

2021年大数据肌肉猿公众号奖励制度


自身情况:

  • 本硕末流211

  • leetcode刷题300+,剑指offer全刷,刷过的题基本上都能码出代码(不一定能过OC,现场面无影响).

  • SQL很熟练,面试没遇到过不会的.一些业务SQL(留存,在线时长,漏斗,连续登陆天数,共同关注好友等等等)也写的很熟练.

  • 理论复习了数据仓库理论/数据分层理论(精读了维度建模工具箱+阿里大数据之路两本书),操作系统,计算机网络,JAVA所有(基础+源码+多线程+JVM),Mysql(看了两遍高性能mysql)

  • 大数据组件准备了Hadoop(看了好几遍hadoop权威指南),Hive(Hql+配置调优),一些其他组件有了解知道干啥用的,没用过,就没忘简历上写.

  • 大数据算法:paxos,2pc,3pc,zab,cap,base.



实习情况:

  • 1年不知名数据仓库实习,开始学到东西了,后来半年多时间都在搬砖.sqlboy.做了无数个报表,做了一小扣扣数据仓库的建设.



准备情况:

  • 一边实习一边准备

  • 12月初写了简历(大数据组件只写了hadoop+hive,其他没用过的都没写到简历上,也没复习,怕被问住).按照简历所写的内容,一点一点开始从头复习.大概时间分配一个星期操作系统,一个星期计算机网络,一个月JAVA,一个星期Mysql,一个星期Hadoop.两天数据仓库理论(因为自身一直都懂,所以时间比较少)

  • 刷面经(大部分刷的是JAVA后台的面经)



投递公司:

  • 时间线:1月底开始投简历,2月下旬和3月上旬陆续做了笔试.3月中旬那一周集中面了六七家.再后来的面试全拒绝了.

  • 简历挂

    1. 陌陌

    2. 猫眼

    3. 快看漫画

      陌陌投递完秒挂(可能因为之前实习的时候投了简历,拒了面试的缘故吧,找实习的学弟学妹们实习投递也要谨慎啊),猫眼和快看漫画怀疑是刷kpi的,投递之后什么消息都没有,一直在初筛.不合适都懒得给我点.

  • 笔试挂

    1. 网易

    2. 百度(提前批挂了简历,后续被捞了做笔试,笔试3道题AC2.7挂了,不太懂为啥捞人)

  • 面试挂

    1. 猿辅导(笔试算法题一道题没做出来还是进了面试,但是二面挂,自我认为面的不错,可能被卡了学历,数据开发只要985的)

    2. 360(一面挂,岗位不符,跟面试官没啥共同语言)

  • 拒面试

    1. 腾讯阅文(笔试都是业务SQL题)

    2. VIPKID

    3. 好未来

    4. 银联

  • 面试走完流程

    1. 贝壳(offer)

    2. keep(offer)

    3. 马蜂窝(offer)

    4. 快手(准offer:oc谈薪,offer审批中,是真滴慢!!!)

    5. 美团(录取排位中,从hr得知技术面评价不错,但是hc少,意向书在我面试前就发光了,可能开水团发完带薪金的offer我还有很大机会,hhhhhh)



面经(时间太长了,大多数问题都忘记了)

  • 贝壳:

    1. 先介绍自己

    2. 数据仓库分层介绍一下,ods和dwd区别,dm是什么?报表数据为什么不能用ods层的数据?

    3. 为什么需要元数据?

    4. 数据质量怎么评估?

    5. MR的原理

    6. SQL题:一道简单的sql(分组求排名?具体忘了)

    7. 怎么保证数据一致性?

    8. 事实都有哪些类型?

    9. 数据仓库搭建过程?

    10. 维度建模的优缺点?还知道别的数据建模吗?除了Innmon模型还有知道吗?

    11. SQL语句的执行过程.

    12. 实时相关你知道吗?

  • 猿辅导

    1. 介绍自己,随便问了简历上的东西

    2. 算法题: 二叉树路径和

    3. SQL题:具体忘了,不太简单,我写了整整一页纸的SQL.

    4. 如何搭建摩拜的数据仓库?

    5. 如何确定业务过程?

    6. 算法题:某个金额的硬币兑换方法

  • 美团

    1. 数据仓库分层

    2. hive的map/reduce数怎么确定?

    3. hive数据倾斜怎么办?

    4. 二叉树种类?完全二叉树知道么?有什么应用?

    5. TOPk问题.除了堆排还有什么解决方式?

    6. SQL题:给定uid,login_time,logout_time 求每分钟最大的在线人数.两个time时间都是标准时间datetime(2019-01-01 12:00:00)这种.说实话这个挺难的,我的直觉想法就是用UDF/transform来解决.面试官肯定了解法,但是 不是想要听到的答案.他说出这道题的目的就不是让你能用SQL写出来的.

    7. 维度建模过程?

    8. 缓慢维度变化问题?

    9. 支架表?拉链表?统计带状维度如何更新?

    10. 为什么维度要做到扁平多对一?

    11. 元数据怎么管理?

    12. hive数据倾斜怎么办?

    13. kafka了解吗?干什么用的?

    14. 说说操作系统打开文件到屏幕显示内容的过程.

    15. 有什么学习习惯?

  • 360

    • 做过spam? 怎么做的?

    • 设计一套实时spam架构.

    • mysql索引知道吗?索引都有哪些数据类型?为啥不用hashmap?

    • 两个数组求中位数,必须最优解O(log(min(m,n)))的那种解法.

      实话:360面试体验很不好,面试官应该是做实时反垃圾的平台的,我实习都是接触离线的,我简历上的东西一个不问,一直再问他会的东西.我直接说我不会,他还继续问.大部分时间都是让我设计那玩意. 不引导强行让你设计,说不会也得设计.

  • 快手

    • 数据分层理论

    • 数据建模过程

    • 缓慢维度变化问题

    • 订单表如何存储?

    • 窗口函数会吗?是一对一,还是一对多? 怎么用?

    • hive数据倾斜怎么办?

    • SQL题:行转列,列转行

    • 二叉树后序遍历非递归

    • 为什么要有数据仓库?

    • 数据怎么保证一致性?

    • 为什么要做元数据管理?如何做元数据管理?

    • 数据质量怎么评估?

    • 缓慢维度变化问题*2

    • Hive Map数和Reduce数如何确定?

    • Hive如何调优?都有哪些参数?

    • Hive如何解决小文件问题?Map阶段?Reduce阶段?

    • JVM内存如何分配?什么时候新生代GC,什么时候老年代GC?

    • HashMap和HashTable有什么区别?

    • 会Spark吗?不会!别问,不知道!

    • SQL题:live_id,uid,in_time,out_time求每个直播间每分钟最大的在线人数.in_time和out_time是datetime类型.跟美团一面SQL题一样,就是加个维度.15分钟内写完.

      有没有发现美团和快手问的问题很像!!!

  • Keep

    • 数仓分层

    • JAVA基础:访问属性关键字/接口继承/类继承/接口和类的区别/java8匿名函数/如何将函数付给变量?

    • 任务调度系统知道吗?如何判断DAG图?写出代码!

    • SQL题:忘了,挺简单的.窗口函数.

    • 如何做好元数据管理?

    • 数据安全怎么保证?为什么做到字段安全困难?

    • 数据倾斜怎么处理?怎么判断哪里出现倾斜?除了看log日志还有什么方法?

    • 任务调度系统*2

    • 数据仓库主题怎么建设?

    • 主动介绍Keep的工作 ....

      当天拿的意向书,最近大裁员.按业务线裁人,进去谁能安心啊!!!

  • 马蜂窝

    • 数据仓库分层

    • 临时需求怎么处理?怎么管理?

    • 数据指标如何保证一致性?

    • 数据仓库如何对外提供数据

    • 设计一个平台,要同时满足BI+临时需求+数据API提供.说实话我到现在也没明白出这问题什么意思!沙雕问题!我觉得这三个就不应该揉到一起做,要是做一个也要分三个功能模块.就分模块给的设计.

    • SQL题:uid,login_date. 找出每个用户连续登陆的最大天数.如果我还要知道哪几天登陆了,怎么写?

    • 数据仓库分层*2

    • 试着设计实时的数据仓库

    • 你的技术栈有哪些?

    • 一面面试官对你评价不错,我是做搜索的.我这也没有什么问的了,你有什么想问我的吗



总结:

  • 好多人都在吐槽说大数据需要看的东西太多了,准备不过来.说实话,我觉得面试主要问问题来源来自你的简历.你把简历上写的都弄明白,不怕深问,怎么着你也能熬过面试的那一个小时.

  • 针对面试准备项目和知识点,功利性一点。边面边补,多总结复盘,不要太怕,踏出第一步很重要!


--end--


扫描下方二维码
添加好友,备注【交流
可私聊交流,也可进资源丰富学习群


更文不易,点个“在看”支持一下👇

浏览 31
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报