基于StyleGAN2的新版网红人脸生成器

共 2200字,需浏览 5分钟

 ·

2022-01-14 13:42


向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx


这是一批基于StyleGAN2制作的新版人脸生成器,既包含基于旧版重制的网红脸明星脸超模脸萌娃脸黄种人脸生成器,也新增了两款更具美学意义的混血脸亚洲美人脸生成器,并附赠有通配的人脸属性编辑器。做了这么多款生成器已经足够用,我将不再尝试做人脸生成器相关的新内容,而是去探索更实用、更能满足用户需求的生成技术,以更好地服务人民。


生成器的作用是可提供我们各种样式的人脸素材,供我们在多种场景下应用并有助于节省寻找真人(人脸)的成本,值得注意的是,每张人脸都是不存在于这个世界上的AI虚拟人物,他们独特且永不重复。可用于人脸识别,人脸目标检测等数据集构造。


基于StyleGAN2制作的版本消除了图片中水滴斑点和扭曲/损坏现象的出现,使生成的成功率接近100%(可参见下方随机生成的数据集),能被应用于大批量生成任务之中;另外图片的质量进一步提升,清晰度已逼近于官方训练所采用的数据集。我希望,这个项目能为影视、广告、游戏和医美工作者们助力,同时为普通爱好者们赋能。


代码 获取方式:

关注微信公众号 datayx  然后回复 人脸生成 即可获取。


明星脸生成




超模脸生成



萌娃脸生成



黄种人脸生成



混血人脸生成



亚洲美人脸生成

  有趣的事情是,在我开源完上述生成器后,一名视觉杂志社的主编找到我,说想一起探讨是否能做出更有辨识度和“惊艳感”的人脸生成器——因为只有在美学上AI能超越人类的话,这种技术才能有效冲击传统的视觉行业——因为这意味着人们能够花最低的成本获取最优质的资源。更有利的一点是,杂志社有优质的图像素材资源,而我有多变的训练技巧,于是我们合作,做出了这一款“亚洲美人脸”生成器,下面展示一些生成器合成的人脸素材。

港式美人脸



日式美人脸



基于StyleGAN2的属性编辑器(edit_photo.py)包含了与旧版属性编辑器基本相同的内容,含有21种可调整的方向,可实现简单的人脸属性编辑。此属性编辑器适用于此项目的所有生成器(即黄种人、网红脸、明星脸、超模脸、萌娃脸、混血脸和亚洲美人脸)以及官方生成器。










机器学习算法AI大数据技术

 搜索公众号添加: datanlp

长按图片,识别二维码




阅读过本文的人还看了以下文章:


TensorFlow 2.0深度学习案例实战


基于40万表格数据集TableBank,用MaskRCNN做表格检测


《基于深度学习的自然语言处理》中/英PDF


Deep Learning 中文版初版-周志华团队


【全套视频课】最全的目标检测算法系列讲解,通俗易懂!


《美团机器学习实践》_美团算法团队.pdf


《深度学习入门:基于Python的理论与实现》高清中文PDF+源码


《深度学习:基于Keras的Python实践》PDF和代码


特征提取与图像处理(第二版).pdf


python就业班学习视频,从入门到实战项目


2019最新《PyTorch自然语言处理》英、中文版PDF+源码


《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码


《深度学习之pytorch》pdf+附书源码


PyTorch深度学习快速实战入门《pytorch-handbook》


【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》


《Python数据分析与挖掘实战》PDF+完整源码


汽车行业完整知识图谱项目实战视频(全23课)


李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材


笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!


《神经网络与深度学习》最新2018版中英PDF+源码


将机器学习模型部署为REST API


FashionAI服装属性标签图像识别Top1-5方案分享


重要开源!CNN-RNN-CTC 实现手写汉字识别


yolo3 检测出图像中的不规则汉字


同样是机器学习算法工程师,你的面试为什么过不了?


前海征信大数据算法:风险概率预测


【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类


VGG16迁移学习,实现医学图像识别分类工程项目


特征工程(一)


特征工程(二) :文本数据的展开、过滤和分块


特征工程(三):特征缩放,从词袋到 TF-IDF


特征工程(四): 类别特征


特征工程(五): PCA 降维


特征工程(六): 非线性特征提取和模型堆叠


特征工程(七):图像特征提取和深度学习


如何利用全新的决策树集成级联结构gcForest做特征工程并打分?


Machine Learning Yearning 中文翻译稿


蚂蚁金服2018秋招-算法工程师(共四面)通过


全球AI挑战-场景分类的比赛源码(多模型融合)


斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)


python+flask搭建CNN在线识别手写中文网站


中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程



不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  


浏览 119
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报