微服务架构的基础框架选择:Spring Cloud还是Dubbo?
不论互联网还是传统行业,凡是涉及信息技术范畴的圈子几乎都在讨论 微服务架构
。近期也看到各大技术社区开始组织一些沙龙和论坛来分享Spring Cloud的相关实施经验,这对于最近正在整理Spring Cloud相关套件内容与实例应用的我而言,还是有不少激励的。
那么第一次实施微服务架构时,我们应该选择哪个基础框架更好呢?
以下内容均为作者个人观点,知识面有限,如有不对,纯属正常,不喜勿喷。
Round 1:背景
Round 2:社区活跃度
我们选择一个开源框架,社区的活跃度是我们极为关注的一个要点。社区越活跃,解决问题的速度越快,框架也会越来越完善,不然当我们碰到问题,就不得不自己解决。而对于团队来说,也就意味着我们不得不自己去维护框架的源码,这对于团队来说也将会是一个很大的负担。
下面看看这两个项目在github上的更新时间,下面截图自2016年7月30日:
最后更新时间为:2016年5月6日
最后更新时间为:12分钟前
可以看到Dubbo的更新已经是几个月前,并且更新频率很低。而Spring Cloud的更新是12分钟前,仍处于高速迭代的阶段。
小结:在社区活跃度上,Spring Cloud毋庸置疑的优于Dubbo,这对于没有大量精力与财力维护这部分开源内容的团队来说,Spring Cloud会是更优的选择。
Round 3:架构完整度
根据Martin Fowler对 微服务架构 的描述中,虽然该架构相较于单体架构有模块化解耦、可独立部署、技术多样性等诸多优点,但是由于分布式环境下解耦,也带出了不少测试与运维复杂度。
根据微服务架构在各方面的要素,看看Spring Cloud和Dubbo都提供了哪些支持。
Dubbo | Spring Cloud | |
---|---|---|
服务注册中心 | Zookeeper | Spring Cloud Netflix Eureka |
服务调用方式 | RPC | REST API |
服务网关 | 无 | Spring Cloud Netflix Zuul |
断路器 | 不完善 | Spring Cloud Netflix Hystrix |
分布式配置 | 无 | Spring Cloud Config |
服务跟踪 | 无 | Spring Cloud Sleuth |
消息总线 | 无 | Spring Cloud Bus |
数据流 | 无 | Spring Cloud Stream |
批量任务 | 无 | Spring Cloud Task |
…… | …… | …… |
以上列举了一些核心部件,大致可以理解为什么之前说Dubbo只是类似Netflix的一个子集了吧。当然这里需要申明一点,Dubbo对于上表中总结为“无”的组件不代表不能实现,而只是Dubbo框架自身不提供,需要另外整合以实现对应的功能,比如:
分布式配置:可以使用淘宝的diamond、百度的disconf来实现分布式配置管理。但是Spring Cloud中的Config组件除了提供配置管理之外,由于其存储可以使用git,因此它天然的实现了配置内容的版本管理,可以完美的与应用版本管理整合起来。
服务跟踪:可以使用京东开源的Hydra
批量任务:可以使用当当开源的Elastic-Job
……
虽然,Dubbo自身只是实现了服务治理的基础,其他为保证集群安全、可维护、可测试等特性方面都没有很好的实现,但是几乎大部分关键组件都能找到第三方开源来实现,这些组件主要来自于国内各家大型互联网企业的开源产品。
RPC vs REST
先来说说,使用Dubbo的RPC来实现服务间调用的一些痛点:
相信这些痛点也是为什么当当网在dubbox(基于Dubbo的开源扩展)中增加了对REST支持的原因之一。
Round 4:文档质量
Dubbo的 文档 可以说在国内开源框架中算是一流的,非常全,并且讲解的也非常深入,由于版本已经稳定不再更新,所以也不太会出现不一致的情况,另外提供了中文与英文两种版本,对于国内开发者来说,阅读起来更加容易上手,这也是dubbo在国内更火一些的原因吧。
Spring Cloud由于整合了大量组件,文档在体量上自然要比dubbo多很多,文档内容上还算简洁清楚,但是更多的是偏向整合,更深入的使用方法还是需要查看其整合组件的详细文档。另外,微信搜索公众号:互联网架构师,回复:面试 领取资料 。另外由于Spring Cloud基于Spring Boot,很多例子相较于传统Spring应用要简单很多(因为自动化配置,很多内容都成了约定的默认配置),这对于刚接触的开发者可能会有些不适应,比较建议了解和学习Spring Boot之后再使用Spring Cloud,不然可能会出现很多一知半解的情况。
小结:虽然Spring Cloud的文档量大,但是如果使用Dubbo去整合其他第三方组件,实际也是要去阅读大量第三方组件文档的,所以在文档量上,我觉得区别不大。对于文档质量,由于Spring Cloud的迭代很快,难免会出现不一致的情况,所以在质量上我认为Dubbo更好一些。而对于文档语言上,Dubbo自然对国内开发团队来说更有优势。
总结
通过上面再几个环节上的分析,相信大家对Dubbo和Spring Cloud有了一个初步的了解。就我个人对这两个框架的使用经验和理解,打个不恰当的比喻:使用Dubbo构建的微服务架构就像组装电脑,各环节我们的选择自由度很高,但是最终结果很有可能因为一条内存质量不行就点不亮了,总是让人不怎么放心,但是如果你是一名高手,那这些都不是问题;而Spring Cloud就像品牌机,在Spring Source的整合下,做了大量的兼容性测试,保证了机器拥有更高的稳定性,但是如果要在使用非原装组件外的东西,就需要对其基础有足够的了解。
从目前Spring Cloud的被关注度和活跃度上来看,很有可能将来会成为微服务架构的标准框架。所以,Spring Cloud的系列文章,我会继续写下去。也欢迎各位朋友一起交流,共同进步。
【一些文章与示例的汇总】:http://git.oschina.net/didispace/SpringBoot-Learning