吴恩达的二八定律:80%的数据+20%的模型=更好的机器学习
数据工匠俱乐部
共 2597字,需浏览 6分钟
·
2021-04-23 02:52
【新智元导读】模型好就能碾压一切吗?吴恩达泼冷水,机器学习发展80%依靠数据集的进步!这也激起了业内对MLOps工具链的关注。
MLOps是什么?
MLOps的最重要任务是提供高质量数据。 标签的一致性也很重要。检验标签是否有自己所管辖的明确界限,即使标签的定义是好的,缺乏一致性也会导致模型效果不佳。 系统地改善baseline模型上的数据质量要比追求具有低质量数据的最新模型要好。 如果训练期间出现错误,那么应当采取以数据为中心的方法。 如果以数据为中心,对于较小的数据集(<10,000个样本),则数据容量上存在很大的改进空间。 当使用较小的数据集时,提高数据质量的工具和服务至关重要。
免责声明:
本公众号所有分享的软件和资料来自网络收集和整理,所有文字和图片版权归属于原作者所有,且仅代表作者个人观点,与数据工匠俱乐部无关,文章仅供读者学习交流使用,并请自行核实相关内容,如文章内容涉及侵权,请联系后台管理员删除
免责声明:
本公众号所有分享的软件和资料来自网络收集和整理,所有文字和图片版权归属于原作者所有,且仅代表作者个人观点,与数据工匠俱乐部无关,文章仅供读者学习交流使用,并请自行核实相关内容,如文章内容涉及侵权,请联系后台管理员删除
(欢迎大家加入数据工匠知识星球获取更多资讯。)
扫描二维码关注我们
微信:SZH9543 邮箱:ccjiu@163.com QQ:2286075659 我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。
(欢迎大家加入数据工匠知识星球获取更多资讯。)
扫描二维码关注我们
我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。
评论