RTX 3090 AI性能实测:FP32训练速度提升50%,张量核心缩水

AI算法与图像处理

共 2440字,需浏览 5分钟

 ·

2020-10-07 12:34

点击上方AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达

晓查 发自 凹非寺 
本文转载自:量子位(QbitAI)

NVIDIA最近发布了备受期待的RTX 30系列显卡。

其中,性能最强大的RTX 3090具有24GB显存10496个CUDA核心。而2018年推出的旗舰显卡Titan RTX同样具有24GB显存。


Titan RTX

RTX 3090

架构

图灵TU102

安培GA102

CUDA核心

4609

10496

张量核心

576

328

显存

24GB

24GB

显存带宽

672GB/s

936GB/s

TDP

285W

350W

RTX 3090在深度学习训练任务中,性能表现究竟如何,它能否取代Titan RTX成为最强消费级AI训练卡?现在已经有了答案。

国外两位AI从业者在拿到这款显卡后,第一时间测试了其在TensorFlow上的AI训练性能。

由于RTX 3090现阶段不能很好地支持TensorFlow 2,因此先在TensorFlow 1.15上进行测试。

话不多说,先看数据。在FP32任务上,RTX 3090每秒可处理561张图片,Titan RTX每秒可处理373张图片,性能提升50.4%

而在FP16任务上,RTX 3090每秒可处理1163张图片,Titan RTX每秒可处理1082张图片,性能仅提升7.5%

为何在FP32任务上的性能提升比在FP16上更明显,主要是因为RTX 3090大大提高了CUDA核心的数量。但是用于处理FP16张量核心数量明显减少,这可能会影响FP16性能。

即便如此,张量核心更少的RTX 3090在很多FP16任务上,性能依然有小幅提升。

随后,英伟达官方提供了支持RTX 3090的CUDA 11.1,谷歌官方在TensorFlow nightly版中提供了对最新显卡的支持。

又有用户再次测试了两款显卡的性能对比。


FP16

FP32


Titan RTX

RTX 3090

Titan RTX

RTX 3090

AlexNet

6634

8255

4448

6493

Inception3

656.1

616.3

223

337.3

Inception4

298.1

132.7

99.74

143.7

ResNet152

423.9

484

134.5

203.6

ResNet150

966.8

1260

336

525.9

VGG16

339.7

442.5

212.1

325.6

 训练性能:每秒处理的图片数量

可以看出,使用FP32进行的所有模型训练,RTX 3090都能实现40%~60%的训练提升。而大多数模型的FP16训练速度几乎不变,最多提升20%,甚至在Inception模型上还有所下降。

只能说RTX 3090在张量核心上的“刀法”颇为精准,如果你对FP16训练性能有较高要求,也许可以等待今后的升级版。

不过RTX 3090上市价格仅1499美元,比Titan RTX便宜1000美元,仍不失为“性价比”之选。

参考链接:

https://www.pugetsystems.com/labs/hpc/RTX3090-TensorFlow-NAMD-and-HPCG-Performance-on-Linux-Preliminary-1902/

https://www.evolution.ai/post/benchmarking-deep-learning-workloads-with-tensorflow-on-the-nvidia-geforce-rtx-3090

下载1:OpenCV黑魔法


AI算法与图像处公众号后台回复:OpenCV黑魔法,即可下载小编精心编写整理的计算机视觉趣味实战教程


下载2 CVPR2020

AI算法与图像处公众号后台回复:CVPR2020即可下载1467篇CVPR 2020论文
     
个人微信(如果没有备注不拉群!
请注明:地区+学校/企业+研究方向+昵称


觉得有趣就点亮在看吧


浏览 71
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报