论文/代码速递2022.10.13!
共 2920字,需浏览 6分钟
·
2022-10-15 08:37
最新成果demo展示:
主页:https://sgvr.kaist.ac.kr/publication/flow-supervisor/ 代码:https://github.com/iwbn/flow-supervisor
光流CNN的训练管道由合成数据集的预训练阶段和目标数据集的微调阶段组成。然而,从目标视频中获取ground truth 流需要付出巨大的努力。本文提出了一种实用的微调方法,以使预处理模型适应没有ground truth 流的目标数据集,这种方法尚未得到广泛的探索。具体来说,我们提出了一个用于自监督的流监督,它由参数分离和学生输出连接组成。这种设计的目的是稳定收敛,并比在微调任务中不稳定的传统自监督方法具有更好的精度。实验结果表明,与不同的自监督方法相比,该方法对于半监督学习是有效的。此外,通过利用额外的未标记数据集,我们在Sintel和KITTI基准上对最先进的光流模型进行了有意义的改进
最新论文整理
ECCV2022
Updated on : 13 Oct 2022
total number : 1
DeepMend: Learning Occupancy Functions to Represent Shape for Repair
论文/Paper: http://arxiv.org/pdf/2210.05728
代码/Code: https://github.com/terascale-all-sensing-research-studio/deepmend
CVPR2022
NeurIPS
Updated on : 13 Oct 2022
total number : 11
AniFaceGAN: Animatable 3D-Aware Face Image Generation for Video Avatars
论文/Paper: http://arxiv.org/pdf/2210.06465
代码/Code: None
Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching
论文/Paper: http://arxiv.org/pdf/2210.06373
代码/Code: https://github.com/craigleili/AttentiveFMaps
Latency-aware Spatial-wise Dynamic Networks
论文/Paper: http://arxiv.org/pdf/2210.06223
代码/Code: https://github.com/leaplabthu/lasnet
Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning
论文/Paper: http://arxiv.org/pdf/2210.06044
代码/Code: None
Long-Form Video-Language Pre-Training with Multimodal Temporal Contrastive Learning
论文/Paper: http://arxiv.org/pdf/2210.06031
代码/Code: https://github.com/microsoft/XPretrain.
Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation
论文/Paper: http://arxiv.org/pdf/2210.05968
代码/Code: https://github.com/sclbd/transfer_attack_rap
Decomposed Knowledge Distillation for Class-Incremental Semantic Segmentation
论文/Paper: http://arxiv.org/pdf/2210.05941
代码/Code: None
A Lower Bound of Hash Codes' Performance
论文/Paper: http://arxiv.org/pdf/2210.05899
代码/Code: https://github.com/vl-group/lbhash
SegViT: Semantic Segmentation with Plain Vision Transformers
论文/Paper: http://arxiv.org/pdf/2210.05844
代码/Code: None
Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork
论文/Paper: http://arxiv.org/pdf/2210.06428
代码/Code: https://github.com/VITA-Group/Trap-and-Replace-Backdoor-Defense
Towards Theoretically Inspired Neural Initialization Optimization
论文/Paper: http://arxiv.org/pdf/2210.05956
代码/Code: https://github.com/HarborYuan/GradCosine