玩转 JVM 中的对象及引用
共 5557字,需浏览 12分钟
·
2023-05-26 17:23
玩转 JVM 中的对象及引用
-
前言
-
一、JVM 中对象的创建过程
-
1).检查加载
-
2).分配内存
-
2、对象的内存分配
-
3、指针碰撞
-
4、空闲列表
-
5、并发安全
-
6、CAS 机制
-
7、分配缓冲
-
-
二、对象的内存布局
-
1、句柄
-
2、直接指针
-
3、判断对象的存活
-
4、引用计数法
-
5、可达性分析
-
-
三、各种引用
-
1、强引用
-
2、软引用 SoftReference
-
3、弱引用 WeakReference
-
4、虚引用 PhantomReference
-
-
四、对象的分配策略
-
1、栈上分配
-
2、逃逸分析
-
3、对象优先在 Eden 区分配
-
4、大对象直接进入老年代
-
五、长期存活对象进入老年区
-
六、对象年龄动态判定
-
七、空间分配担保
-
-
总结
提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
提示:以下是本篇文章正文内容,下面案例可供参考
一、JVM 中对象的创建过程
2、对象的内存分配
虚拟机遇到一条 new 指令时,首先检查是否被类加载器加载,如果没有,那必须先执行相应的类加载过程。类加载就是把 class 加载到 JVM 的运行时数据区的过程
1).检查加载
首先检查这个指令的参数是否能在常量池中定位到一个类的符号引用(符号引用 :符号引用以一组符号来描述所引用的目标),并且检查类是否已经被加载、 解析和初始化过。
2).分配内存
接下来虚拟机将为新生对象分配内存。为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。
3、指针碰撞
如果 Java 堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅 是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”。
4、空闲列表
如果 Java 堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上 哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”。
5、并发安全
除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情 况下也并不是线程安全的,可能出现正在给对象 A 分配内存,指针还没来得及修改,对象 B 又同时使用了原来的指针来分配内存的情况。
6、CAS 机制
解决这个问题有两种方案,一种是对分配内存空间的动作进行同步处理——实际上虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性
7、分配缓冲
另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在 Java 堆中预先分配一小块私有内存,也就是本地线程分配缓冲(Thread Local Allocation Buffer,TLAB),JVM 在线程初始化时,同时也会申请一块指定大小的内存,只给当前线程使用,这样每个线程都单独拥有一个 Buffer,如果 需要分配内存,就在自己的 Buffer 上分配,这样就不存在竞争的情况,可以大大提升分配效率,当 Buffer 容量不够的时候,再重新从 Eden 区域申请一块 继续使用。TLAB 的目的是在为新对象分配内存空间时,让每个 Java 应用线程能在使用自己专属的分配指针来分配空间,减少同步开销。TLAB 只是让每个线程有私有的分配指针,但底下存对象的内存空间还是给所有线程访问的,只是其它线程无法在这个区域分配而已。当一个 TLAB 用满(分 配指针 top 撞上分配极限 end 了),就新申请一个 TLAB。参数:
-XX:+UseTLAB 允许在年轻代空间中使用线程本地分配块(TLAB)。默认情况下启用此选项。要禁用 TLAB,请指定-XX:-UseTLAB
在 HotSpot 虚拟机中,对象在内存中存储的布局可以分为 3 块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC 分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等。对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。如果对象是一个 java 数组,那么在对象头中还有一块用于记录数组长度的数据。第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于 HotSpot VM 的自动内存管理系统要求对对象的大小必须 是 8 字节的整数倍。当对象其他数据部分没有对齐时,就需要通过对齐填充来补全。
1、句柄
如果使用句柄访问的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类 型数据各自的具体地址信息。使用句柄来访问的最大好处就是 reference 中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实 例数据指针,而 reference 本身不需要修改.
2、直接指针
如果使用直接指针访问, reference 中存储的直接就是对象地址。这两种对象访问方式各有优势, 使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在 Java 中非常频 繁,因此这类开销积少成多后也是一项非常可观的执行成本。对 Sun HotSpot 而言,它是使用直接指针访问方式进行对象访问的
3、判断对象的存活
在堆里面存放着几乎所有的对象实例,垃圾回收器在对对进行回收前,要做的事情就是确定这些对象中哪些还是“存活”着,哪些已经“死去”(死去 代表着不可能再被任何途径使用得对象了)
4、引用计数法
在对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1,当引用失效时,计数器减 1
5、可达性分析
来判定对象是否存活的。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为 引用链(Reference Chain),当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是不可用的。
三、各种引用1、强引用
一般的 Object obj = new Object() ,就属于强引用。在任何情况下,只有有强引用关联(与根可达)还在,垃圾回收器就永远不会回收掉被引用的对象。
2、软引用 SoftReference
空间,才会抛出内存溢出)。参见代码:VM 参数 -Xms10m -Xmx10m -XX:+PrintGC
3、弱引用 WeakReference
一些有用(程度比软引用更低)但是并非必需,用弱引用关联的对象,只能生存到下一次垃圾回收之前,GC 发生时,不管内存够不够,都会被回收。
4、虚引用 PhantomReference
幽灵引用,最弱(随时会被回收掉) 垃圾回收的时候收到一个通知,就是为了监控垃圾回收器是否正常工作。
四、对象的分配策略1、栈上分配
没有逃逸(了解即可) 即方法中的对象没有发生逃逸。逃逸分析的原理:分析对象动态作用域,当一个对象在方法中定义后,它可能被外部方法所引用。比如:调用参数传递到其他方法中,这种称之为方法逃逸。甚至还有可能被外部线程访问到,例如:赋值给其他线程中访问的变量,这个称之为线程逃逸。从不逃逸到方法逃逸到线程逃逸,称之为对象由低到高的不同逃逸程度。如果确定一个对象不会逃逸出线程之外,那么让对象在栈上分配内存可以提高 JVM 的效率
2、逃逸分析
如果是逃逸分析出来的对象可以在栈上分配的话,那么该对象的生命周期就跟随线程了,就不需要垃圾回收,如果是频繁的调用此方法则可以得到很大的性能提高。采用了逃逸分析后,满足逃逸的对象在栈上分配
3、对象优先在 Eden 区分配
大多数情况下,对象在新生代 Eden 区中分配。当 Eden 区没有足够空间分配时,虚拟机将发起一次 Minor GC。
4、大对象直接进入老年代
大对象就是指需要大量连续内存空间的 Java 对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组。大对象对虚拟机的内存分配来说就是一个不折不扣的坏消息,比遇到一个大对象更加坏的消息就是遇到- -群“朝生夕灭”的“短命大对象”,我们写程序 的时候应注意避免。在 Java 虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好 它们。而当复制对象时,大对象就意味着高额的内存复制开销。HotSpot 虚拟机提供了-XX:PretenureSizeThreshold 参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在 Eden 区及两个 Survivor 区之间来回复制,产生大量的内存复制操作。这样做的目的:1.避免大量内存复制,2.避免提前进行垃圾回收,明明内存有空间进行分配。PretenureSizeThreshold 参数只对 Serial 和 ParNew 两款收集器有效。-XX:PretenureSizeThreshold=4m
五、长期存活对象进入老年区
HotSpot 虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中。
六、对象年龄动态判定
为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 空间中 相同年龄所有对象大小的总和大于 Survivor 空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到 MaxTenuringThreshold 中要求的 年龄
七、空间分配担保
在发生 Minor GC 之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么 Minor GC 可以确保是安全 的。如果不成立,则虚拟机会查看 HandlePromotionFailure 设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历 次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC,尽管这次 Minor GC 是有风险的,如果担保失败则会进行一次 Full GC;如果小 于,或者 HandlePromotionFailure 设置不允许冒险,那这时也要改为进行一次 Full GC。
总结这节概念性的东西还是比较多的,扫盲阶段。