竞赛提升:必知必会的21篇论文!

共 2973字,需浏览 6分钟

 ·

2021-02-26 22:39

 Datawhale干货 
作者:阿水,Datawhale成员

如何更好的参与竞赛实践呢?当然是阅读论文了本文整理了竞赛常见库和模型的论文,涵盖树模型和深度学习模型。

Gradient Boosting

  • J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

  • Friedman, Stochastic Gradient Boosting, 1999

  • T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Random Forests

  • Breiman, Random Forests, Machine Learning, 45(1), 5-32, 2001.

  • P. Geurts, D. Ernst., and L. Wehenkel, Extremely randomized trees, Machine Learning, 63(1), 3-42, 2006.

Regularized Greedy Forest

  • Rie Johnson and Tong Zhang. Learning Nonlinear Functions Using Regularized Greedy Forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5):942-954, May 2014.

XGBoost

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016

LightGBM

  • Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu. "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 3149-3157.

  • Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Tie-Yan Liu. "A Communication-Efficient Parallel Algorithm for Decision Tree". Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1279-1287.

  • Huan Zhang, Si Si and Cho-Jui Hsieh. "GPU Acceleration for Large-scale Tree Boosting". SysML Conference, 2018.

CatBoost

  • Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Ostroumova Prokhorenkova, Aleksandr Vorobev "Fighting biases with dynamic boosting". arXiv:1706.09516, 2017.

  • Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin "CatBoost: gradient boosting with categorical features support". Workshop on ML Systems at NIPS 2017.

Deep Forest

  • Zhou, Z. H., & Feng, J. (2017). Deep forest. arXiv preprint arXiv:1702.08835.

TabNet

  • TabNet: Attentive Interpretable Tabular Learning

Transformer

  • Vaswani A , Shazeer N , Parmar N , et al. Attention Is All You Need. arXiv, 2017.

Bert

  • Devlin J , Chang M W , Lee K , et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.

prophet

  • Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45 (https://peerj.com/preprints/3190.pdf).

FTLR

  • McMahan, H. Brendan, et al. "Ad click prediction: a view from the trenches." ACM SIGKDD g. 2013.

Factorization Machines

  • Rendle, Steffen. Factorization machines. 2010 IEEE International Conference on Data Mining. IEEE, 2010.

FFM

  • Juan, Yuchin, et al. Field-aware factorization machines for CTR prediction. Proceedings of the 10th ACM conference on recommender systems. 2016.

DeepFM

  • Guo, Huifeng, et al. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. IJCAI. 2017.
“整理不易,三连
浏览 31
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报