对比Excel,学习pandas数据透视表

简说Python

共 2788字,需浏览 6分钟

 ·

2021-05-22 22:11

↑↑↑关注后"星标"简说Python

人人都可以简单入门Python、爬虫、数据分析
 简说Python推荐 
来源:凹凸数据
作者:黄同学

大家好,我是老表,今天给大家分享下Excel里的透视表操作,以及如何利用python实现,记得看完点赞。


Excel中做数据透视表


① 选中整个数据源;


② 依次点击“插入”—“数据透视表”


③ 选择在Excel中的哪个位置,插入数据透视表


④ 然后根据实际需求,从不同维度展示结果


⑤ 结果如下


pandas用pivot_table()做数据透视表


1)语法格式

pd.pivot_table(data,index=None,columns=None,
values=None,aggfunc='mean',
margins=False,margins_name='All',
dropna=True,fill_value=None)

2)对比excel,说明上述参数的具体含义


参数说明:

  • data 相当于Excel中的"选中数据源";

  • index 相当于上述"数据透视表字段"中的行;

  • columns 相当于上述"数据透视表字段"中的列;

  • values 相当于上述"数据透视表字段"中的值;

  • aggfunc 相当于上述"结果"中的计算类型;

  • margins 相当于上述"结果"中的总计;

  • margins_name 相当于修改"总计"名,为其它名称;

下面几个参数,用的较少,记住干嘛的,等以后需要就百度。

  • dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除;

  • fill_value 表示将缺失值,用某个指定值填充。


案例说明


1)求出不同品牌下,每个月份的销售数量之和


① 在Excel中的操作结果如下


② 在pandas中的操作如下

df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:


2)求出不同品牌下,每个地区、每个月份的销售数量之和


① 在Excel中的操作结果如下


② 在pandas中的操作如下

df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns=["销售区域","月份"],
values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:


3)求出不同品牌不同地区下,每个月份的销售数量之和


① 在Excel中的操作结果如下


② 在pandas中的操作如下

df = pd.read_excel(r"pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index=["品牌","销售区域"],columns="月份",
values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:


4)求出不同品牌下的“销售数量之和”与“货号计数”


① 在Excel中的操作结果如下


② 在pandas中的操作如下

df = pd.read_excel(r"pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
values=["销售数量","货号"],
aggfunc={"销售数量":"sum","货号":"count"},
margins=True,margins_name="总计")
display(df1)

结果如下:

--END--


留言赠书

赠书规则给本文点赞("在看"不作要求),扫描下方二维码,添加老表的微信。把点赞截图发给我,我会发送抽奖码给大家,时间截止至05月24号 20:00。可获得《海量数据处理与大数据技术实战》赠书一本。

扫码即可加我微信

观看朋友圈,获取最新学习资源

注意:中奖者24小时内,微信私聊我回复:书名+姓名+电话+收件地址即可领取,逾期不候!为了大家都有机会中奖,本月已经中过书的朋友,再次中奖将不再赠书。

本批书籍由 北京大学出版社 赞助,再次致谢。也欢迎大家自行前往购买支持。


简说Python 投稿规则及激励

规则:必须是自己的原创文章,和Python相关技术文章,形式不限制(文字、图文、漫画等),字数800+,在微信公众号首发。

激励

根据文章内容 字数 分为两种基础和深度

基础文章:每投稿两篇可以获得技术相关图书一本 从书单里选

深度文章:每1k字50-100元(代码不算)

额外激励

文章阅读量超过2000,激励50元

文章被同量级大号转载次数5次及以上,激励100元

长期投稿作者还有额外激励,技术能力可以的,还可以一起做项目,接私活,内推等。



学习更多:
整理了我开始分享学习笔记到现在超过250篇优质文章,涵盖数据分析、爬虫、机器学习等方面,别再说不知道该从哪开始,实战哪里找了

点赞”传统美德不能丢 

浏览 34
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报