Python有什么不为人知的坑?
>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string") # 注意两个的id值是相同的.
140420665652016
>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True
>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False
>>> a, b = "wtf!", "wtf!"
>>> a is b
True # 3.7 版本返回结果为 False.
>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa'
True
>>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa'
False # 3.7 版本返回结果为 True
这些行为是由于 Cpython 在编译优化时, 某些情况下会尝试使用已经存在的不可变对象而不是每次都创建一个新对象. (这种行为被称作字符串的驻留[string interning])
发生驻留之后, 许多变量可能指向内存中的相同字符串对象. (从而节省内存)
在上面的代码中, 字符串是隐式驻留的. 何时发生隐式驻留则取决于具体的实现. 这里有一些方法可以用来猜测字符串是否会被驻留:所有长度为 0 和长度为 1 的字符串都被驻留.
字符串在编译时被实现 ('wtf' 将被驻留, 但是 ''.join(['w', 't', 'f']) 将不会被驻留)
字符串中只包含字母,数字或下划线时将会驻留. 所以 'wtf!' 由于包含 ! 而未被驻留.
当在同一行将 a 和 b 的值设置为 "wtf!" 的时候, Python 解释器会创建一个新对象, 然后同时引用第二个变量(译: 仅适用于3.7以下, 详细情况请看这里). 如果你在不同的行上进行赋值操作, 它就不会“知道”已经有一个 wtf! 对象 (因为 "wtf!" 不是按照上面提到的方式被隐式驻留的). 它是一种编译器优化, 特别适用于交互式环境.
常量折叠(constant folding) 是 Python 中的一种窥孔优化(peephole optimization)技术. 这意味着在编译时表达式 'a'*20 会被替换为 'aaaaaaaaaaaaaaaaaaaa' 以减少运行时的时钟周期. 只有长度小于 20 的字符串才会发生常量折叠.
def some_func():
try:
return 'from_try'
finally:
return 'from_finally'
>>> some_func()
'from_finally'
当在 "try...finally" 语句的 try 中执行 return, break 或 continue 后, finally 子句依然会执行.
函数的返回值由最后执行的 return 语句决定. 由于 finally 子句一定会执行, 所以 finally 子句中的 return 将始终是最后执行的语句.
class WTF:
pass
>>> WTF() == WTF() # 两个不同的对象应该不相等
False
>>> WTF() is WTF() # 也不相同
False
>>> hash(WTF()) == hash(WTF()) # 哈希值也应该不同
True
>>> id(WTF()) == id(WTF())
True
当调用 id 函数时, Python 创建了一个 WTF 类的对象并传给 id 函数. 然后 id 函数获取其id值 (也就是内存地址), 然后丢弃该对象. 该对象就被销毁了.
当我们连续两次进行这个操作时, Python会将相同的内存地址分配给第二个对象. 因为 (在CPython中) id 函数使用对象的内存地址作为对象的id值, 所以两个对象的id值是相同的.
综上, 对象的id值仅仅在对象的生命周期内唯一. 在对象被销毁之后, 或被创建之前, 其他对象可以具有相同的id值.
那为什么 is 操作的结果为 False 呢? 这是由对象销毁的顺序造成的.
for i in range(4):
print(i)
i = 10
0
1
2
3
由于循环在Python中工作方式, 赋值语句 i = 10 并不会影响迭代循环, 在每次迭代开始之前, 迭代器(这里指 range(4)) 生成的下一个元素就被解包并赋值给目标列表的变量(这里指 i)了.