卷积与互相关 在信号处理、图像处理和其它工程/科学领域,卷积都是一种使用广泛的技术。在深度学习领域,卷积神经网络(CNN)这种模型架构就得名于这种技术。但是,深度学习领域的卷积本质上是信号/图像处理领域内的互相关(cross-correlation)。这两种操作之间存在细微的差别。 无需太过深入细节,我们就能看到这个差别。在信号/图像处理领域,卷积的定义是: 其定义是两个函数中一个函数经过反转和位移后再相乘得到的积的积分。下面的可视化展示了这一思想: 信号处理中的卷积。过滤器 g 经过反转,然后再沿水平轴滑动。在每一个位置,我们都计算 f 和反转后的 g 之间相交区域的面积。这个相交区域的面积就是特定位置出的卷积值。 这里,函数 g 是过滤器。它被反转后再沿水平轴滑动。在每一个位置,我们都计算 f 和反转后的 g 之间相交区域的面积。这个相交区域的面积就是特定位置出的卷积值。 另一方面,互相关是两个函数之间的滑动点积或滑动内积。互相关中的过滤器不经过反转,而是直接滑过函数 f。f 与 g 之间的交叉区域即是互相关。下图展示了卷积与互相关之间的差异。 信号处理中卷积与互相关之间的差异 在深度学习中,卷积中的过滤器不经过反转。严格来说,这是互相关。我们本质上是执行逐元素乘法和加法。但在深度学习中,直接将其称之为卷积更加方便。这没什么问题,因为过滤器的权重是在训练阶段学习到的。如果上面例子中的反转函数 g 是正确的函数,那么经过训练后,学习得到的过滤器看起来就会像是反转后的函数 g。因此,在训练之前,没必要像在真正的卷积中那样首先反转过滤器。
3D 卷积 在上一节的解释中,我们看到我们实际上是对一个 3D 体积执行卷积。但通常而言,我们仍在深度学习中称之为 2D 卷积。这是在 3D 体积数据上的 2D 卷积。过滤器深度与输入层深度一样。这个 3D 过滤器仅沿两个方向移动(图像的高和宽)。这种操作的输出是一张 2D 图像(仅有一个通道)。 很自然,3D 卷积确实存在。这是 2D 卷积的泛化。下面就是 3D 卷积,其过滤器深度小于输入层深度(核大小<通道大小)。因此,3D 过滤器可以在所有三个方向(图像的高度、宽度、通道)上移动。在每个位置,逐元素的乘法和加法都会提供一个数值。因为过滤器是滑过一个 3D 空间,所以输出数值也按 3D 空间排布。也就是说输出是一个 3D 数据。 在 3D 卷积中,3D 过滤器可以在所有三个方向(图像的高度、宽度、通道)上移动。在每个位置,逐元素的乘法和加法都会提供一个数值。因为过滤器是滑过一个 3D 空间,所以输出数值也按 3D 空间排布。也就是说输出是一个 3D 数据。 与 2D 卷积(编码了 2D 域中目标的空间关系)类似,3D 卷积可以描述 3D 空间中目标的空间关系。对某些应用(比如生物医学影像中的 3D 分割/重构)而言,这样的 3D 关系很重要,比如在 CT 和 MRI 中,血管之类的目标会在 3D 空间中蜿蜒曲折。
转置卷积(去卷积) 对于很多网络架构的很多应用而言,我们往往需要进行与普通卷积方向相反的转换,即我们希望执行上采样。例子包括生成高分辨率图像以及将低维特征图映射到高维空间,比如在自动编码器或形义分割中。(在后者的例子中,形义分割首先会提取编码器中的特征图,然后在解码器中恢复原来的图像大小,使其可以分类原始图像中的每个像素。) 实现上采样的传统方法是应用插值方案或人工创建规则。而神经网络等现代架构则倾向于让网络自己自动学习合适的变换,无需人类干预。为了做到这一点,我们可以使用转置卷积。 转置卷积在文献中也被称为去卷积或 fractionally strided convolution。但是,需要指出「去卷积(deconvolution)」这个名称并不是很合适,因为转置卷积并非信号/图像处理领域定义的那种真正的去卷积。从技术上讲,信号处理中的去卷积是卷积运算的逆运算。但这里却不是这种运算。因此,某些作者强烈反对将转置卷积称为去卷积。人们称之为去卷积主要是因为这样说很简单。后面我们会介绍为什么将这种运算称为转置卷积更自然且更合适。 我们一直都可以使用直接的卷积实现转置卷积。对于下图的例子,我们在一个 2×2 的输入(周围加了 2×2 的单位步长的零填充)上应用一个 3×3 核的转置卷积。上采样输出的大小是 4×4。 将 2×2 的输入上采样成 4×4 的输出 有趣的是,通过应用各种填充和步长,我们可以将同样的 2×2 输入图像映射到不同的图像尺寸。下面,转置卷积被用在了同一张 2×2 输入上(输入之间插入了一个零,并且周围加了 2×2 的单位步长的零填充),所得输出的大小是 5×5。 将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。这种矩阵乘法的卷积的实现遵照:C x Large = Small。 下面的例子展示了这种运算的工作方式。它将输入平展为 16×1 的矩阵,并将卷积核转换为一个稀疏矩阵(4×16)。然后,在稀疏矩阵和平展的输入之间使用矩阵乘法。之后,再将所得到的矩阵(4×1)转换为 2×2 的输出。 卷积的矩阵乘法:将 Large 输入图像(4×4)转换为 Small 输出图像(2×2) 现在,如果我们在等式的两边都乘上矩阵的转置 CT,并借助「一个矩阵与其转置矩阵的乘法得到一个单位矩阵」这一性质,那么我们就能得到公式 CT x Small = Large,如下图所示。 卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。你就知道「转置卷积」这个名字的由来了。 转置矩阵的算术解释可参阅:https://arxiv.org/abs/1603.07285