【资源推荐】小白入门数据科学的几个宝藏学习网站

机器学习初学者

共 2642字,需浏览 6分钟

 ·

2020-07-03 23:28

关注上方Python数据科学”,选择星标,

关键时间,第一时间送达!☞500g+超全学习资源免费领取

81e571140c1e41c9abf7dc5f4a9f7921.webp

作者:东哥起飞
出品:Python数据科学

前方高能,准备开启收藏夹吃灰模式。

本篇东哥分享几个数据科学入门的学习网站,全部免费资源,且内容优质,是小白入门的不二选择。吃灰是常规操作,但也得吃,总比需要用的时候找不到强。

下面开始进入正题。

Kaggle

什么是Kaggle?

63c338ec03dae4e58a25ca2451b9bc9b.webp


kaggle是全球最先也是目前规模最大的数据科学竞赛组织了。之所以这么受欢迎,是因为很多大的公司奉献出自家真实的数据给kaggle,提出真实业务场景面临的痛点,需要数据科学上的解决方案。

我个人觉得是非常有意思的,因为很多人苦学理论,正愁着没有真实数据去实践,有了这个机会,不论方案是否可以排上名次,都是宝贵的实践经验啊。

当然,作为方案最优的前三名可以得到一笔丰厚的报酬,几千美元到几万美元不等,这更加刺激广大数据爱好者了。竞赛已经有上百场了,各种场景和需求,并且随着需求增多,竞赛也在不断增加。

Kaggle上有什么?

原来的kaggle只有单一的竞赛,现在的kaggle已经不只是竞赛这么简单了。它还有丰富的社区免费的学习课程在线实操的环境

下面是一在线操作提交模型的环境,非常奈斯。

c28db16b6997617d35d4fc375785f17d.webp

各路神仙在社区共享自己的kernels和源代码,是个非常好的交流学习机会,有兴趣可以自己去看。这里主要说下免费的学习课程,下面是地址。

https://www.kaggle.com/learn/overview

0ee959b6b88dd383e80326e5f3819cf4.webp

学习列表中有python机器学习深度学习可视化pandas数据处理SqL入门和进阶等14门课程。虽是英文,我相信对于有心的人都不是问题了。

Coursera

0fbf8808c7ef0a5b23fb036652531eaa.webp

Coursera很多朋友应该熟悉,吴恩达的机器学习课程最早就是从这里开始分享的。里面有各个名校大学的公开课,很多都是免费公开的课程,听课是免费的,但学完后认证证书需要付费。

这里分享几个东哥收藏的宝藏课程,每一个都很经典,好评无数。

1.机器学习 (Andrew Ng / 斯坦福大学)


977319df9490b128bf64492fcbdecc0c.webp

https://www.coursera.org/learn/machine-learning

2.专业数据科学(10门课/JHU)


e5b2563905f641eb75b2c704f7e20ae5.webp

https://www.coursera.org/specializations/jhu-data-science

3.数据科学实战(5门课/JHU)


a5b3eab501d7f0d0e7e69ac1a75ee7c4.webp

https://www.coursera.org/specializations/executive-data-science

4.专业数据挖掘(6门课/伊利诺伊大学)


80a2fd08c3b1e7396fd6615a65fc3d84.webp

https://www.coursera.org/specializations/data-mining

5.数据科学硕士(8门课/伊利诺伊大学圣巴巴拉分校)


33725331f5b5f752a0e77b878a5737b0.webp

https://www.coursera.org/degrees/master-of-computer-science-illinois/data-science

6.数据科学应用硕士(密歇根大学)


aa54ef3c543fa3d192a48a12c22b572b.webp

https://www.coursera.org/degrees/master-of-applied-data-science-umich

Udacity

Udacity(优达学成)是个美国的付费类培训机构,内容涉及所有编程和计算机类的课程,是歪果仁拍的视频课程,质量很高,但收费很贵。

仔细观察,其实也有很多免费的课程供学习的,东哥把收藏的存货也拿出来分享下。

1.数据科学导论


总共10个章节,以titanicNewYork Subway data项目为例介绍数据分析、可视化、数据处理、Mapreduce大数据。


bcc8f3317440dedbc2ede521ccdce7e7.webp

https://www.udacity.com/course/intro-to-data-science--ud359

2.数据分析导论


7fec23f88bba201ebc10bae6cc35d6db.webp

https://www.udacity.com/course/intro-to-data-analysis--ud170

3.数据可视化分析


这个课程是基于R语言的,介绍了R语言基础、逻辑回归、线性回归、正则化等内容。


3d53f1f22f9524b7a7dfb60925004b17.webp

https://www.udacity.com/course/data-analysis-and-visualization--ud404

4.使用SQL做数据分析


58dcb48e91af55949fa5b7394d3e4209.webp

https://www.udacity.com/course/sql-for-data-analysis--ud198

5. 统计推理入门


主要介绍推断性统计的知识,比如各种检验,假设检验、t检验、卡方检验、ANOVA方差分析、回归等等。


a57f4347a79eee6212b0229b1cb921c3.webp

https://www.udacity.com/course/intro-to-inferential-statistics--ud201

当然,除了这些还有很多付费的,感兴趣可自行查找,本篇只谈免费。

其它社区和博客

下面是几个很好的国外数据科学社区和个人博客,内容不如前面三个学习网站有组织和条条理,但是有很多优秀的文章分享也可以作为参考学习。

1. 面向数据科学

https://towardsdatascience.com/

这里着重说下这个社区,专门的数据科学学习平台,里面都是一些国外爱好者的分享,涵盖了data sciencemachine learningdeep learningvisualizationprogramming等,缺点是需要特殊工具才能上去,用谷歌访问助手也可以。

2. 方差解释

http://varianceexplained.org/

3. 成为一名数据科学家

https://www.becomingadatascientist.com

4. Mark Meloon

https://www.markmeloon.com/

5. Julia Silge

https://juliasilge.com/blog/


以上就是东哥分享的一些免费课程资源,资源多少不是关键,关键的是迈开第一步,深入进去开始学习。
先分享这些,如果觉得有帮助,还请多分享点个在看
- 完 -


往期精彩回顾





获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/yFQV7am

本站qq群1003271085。

加入微信群请扫码进群:

#资源推荐

浏览 11
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报