​LeetCode刷题实战79:单词搜索

共 3366字,需浏览 7分钟

 ·

2020-10-28 08:00

算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !

今天和大家聊的问题叫做 单词搜索,我们先来看题面:

https://leetcode-cn.com/problems/word-search/

Given a 2D board and a word, find if the word exists in the grid.


The word can be constructed from letters of sequentially adjacent cells, where "adjacent" cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

题意

给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

样例

board =
[
  ['A','B','C','E'],
  ['S','F','C','S'],
  ['A','D','E','E']
]

给定 word = "ABCCED", 返回 true
给定 word = "SEE", 返回 true
给定 word = "ABCB", 返回 false


比如第一个字符串ABCCED,我们可以在数组当中找到这样一条路径:

解题

https://www.cnblogs.com/techflow/p/13180855.html

题解

如果你刷过许多题,经常思考的话,我想应该不难发现,这道题的本质其实和走迷宫问题是一样的。
我们拿到的这个二维的字符型数组就是一个迷宫, 我们是要在这个迷宫当中找一条“出路”。不过我们的目的不是找到终点,而是找到一条符合题意的路径。在走迷宫问题当中,迷宫中不是每一个点都可以走的,同样在当前问题当中,也不是每一个点都符合字符串的要求的。这两个问题虽然题面看起来大相径庭,但是核心的本质是一样的。
我们来回忆一下,走迷宫问题应该怎么解决?
这个答案应该已经非常确定了,当然是搜索算法。我们需要搜索解可能存在的空间去寻找存在的解,也就是说我们面临的是一个解是否存在的问题,要么找到解,要么遍历完所有的可能性发现解不存在。确定了是搜索算法之后,剩下的就简单了,我们只有两个选项,深度优先或者是广度优先。
理论上来说,一般判断解的存在性问题,我们使用广度优先搜索更多,因为一般来说它可以更快地找到解。但是本题当中有一个小问题是,广度优先搜索需要在队列当中存储中间状态,需要记录地图上行走过的信息,每有一个状态就需要存储一份地图信息,这会带来比较大的内存开销,同样存储的过程也会带来计算开销,在这道题当中,这是不可以接受的。拷贝状态带来的空间消耗还是小事,关键是拷贝带来的时间开销,就足够让这题超时了。所以我们别无选择,只能深度优先。
明确了算法之后,只剩下了最后一个问题,在这个走迷宫问题当中,我们怎么找到迷宫的入口呢?因为题目当中并没有规定我们起始点的位置,这也不难解决,我们遍历二维的字符数组,和字符串开头相匹配的位置都可以作为迷宫的入口。
最后,我们来看代码,并没有什么技术含量,只是简单的回溯法而已。

class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        fx = [[0, 1], [0, -1], [1, 0], [-1, 0]]
        def dfs(x, y, l):
            if l == len(word):
                return True
            for i in range(4):
                nx = x + fx[i][0]
                ny = y + fx[i][1]
                # 出界或者是走过的时候,跳过
                if nx < 0 or nx == n or ny < 0 or ny == m or visited[nx][ny]:
                    continue
                if board[nx][ny] == word[l]:
                    visited[nx][ny] = 1
                    if dfs(nx, ny, l+1):
                        return True
                    visited[nx][ny] = 0
            return False
                
        n = len(board)
        if n == 0:
            return False
        m = len(board[0])
        if m == 0:
            return False
        
        visited = [[0 for i in range(m)] for j in range(n)]
        
        for i in range(n):
            for j in range(m):
                # 找到合法的起点
                if board[i][j] == word[0]:
                    visited = [[0 for _ in range(m)] for _ in range(n)]
                    visited[i][j] = 1
                    if dfs(i, j, 1):
                        return True
                    
        return False

总结

如果能够想通回溯法,并且对于回溯法的实现足够熟悉,那么这题的难度是不大的。实际上至今为止,我们一路刷来,已经做了好几道回溯法的问题了,我想对你们来说,回溯法的问题应该已经小菜一碟了。
相比于回溯法来说,我觉得更重要的是我们能够通过分析想清楚,为什么广度优先搜索不行,底层核心的本质原因是什么。这个思考的过程往往比最后的结论来得重要。
好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力。


上期推文:

LeetCode40-60题汇总,速度收藏!
LeetCode刷题实战61:旋转链表
LeetCode刷题实战62:不同路径
LeetCode刷题实战63:不同路径 II
LeetCode刷题实战64:最小路径和
LeetCode刷题实战66:加一
LeetCode刷题实战67:二进制求和
LeetCode刷题实战68:文本左右对齐
LeetCode刷题实战69:x 的平方根
LeetCode刷题实战70:爬楼梯
LeetCode刷题实战71:简化路径
LeetCode刷题实战72:编辑距离
LeetCode刷题实战73:矩阵置零
LeetCode刷题实战74:搜索二维矩阵
LeetCode刷题实战75:颜色分类
LeetCode刷题实战76:最小覆盖子串
LeetCode刷题实战77:组合
LeetCode刷题实战78:子集

浏览 33
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报