史上最全Zookeeper核心原理

Java专栏

共 6841字,需浏览 14分钟

 ·

2021-06-08 19:49

点击关注公众号,Java干货及时送达

真香!24W字的Java面试手册(点击查看)

1、Zookeeper的角色

  » 领导者(leader),负责进行投票的发起和决议,更新系统状态

  » 学习者(learner),包括跟随者(follower)和观察者(observer),follower用于接受客户端请求并想客户端返回结果,在选主过程中参与投票

  » Observer可以接受客户端连接,将写请求转发给leader,但observer不参加投票过程,只同步leader的状态,observer的目的是为了扩展系统,提高读取速度

  » 客户端(client),请求发起方

  • Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协

     议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者

   崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后

    ,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。


  • 为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(

   proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识

     leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的

   统治时期。低32位用于递增计数。

  • 每个Server在工作过程中有三种状态:

    LOOKING:当前Server不知道leader是谁,正在搜寻

    LEADING:当前Server即为选举出来的leader

    FOLLOWING:leader已经选举出来,当前Server与之同步


  其他文档:

http://www.cnblogs.com/lpshou/archive/2013/06/14/3136738.html


2、Zookeeper 的读写机制

  » Zookeeper是一个由多个server组成的集群

  » 一个leader,多个follower

  » 每个server保存一份数据副本

  » 全局数据一致

  » 分布式读写

  » 更新请求转发,由leader实施


3、Zookeeper 的保证 

  » 更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行

  » 数据更新原子性,一次数据更新要么成功,要么失败

  » 全局唯一数据视图,client无论连接到哪个server,数据视图都是一致的

  » 实时性,在一定事件范围内,client能读到最新数据


4、Zookeeper节点数据操作流程

   


    注:1.在Client向Follwer发出一个写的请求


      2.Follwer把请求发送给Leader


      3.Leader接收到以后开始发起投票并通知Follwer进行投票


      4.Follwer把投票结果发送给Leader


       5.Leader将结果汇总后如果需要写入,则开始写入同时把写入操作通知给  Leader,然后commit;


      6.Follwer把请求结果返回给Client 


 Follower主要有四个功能:

    • 1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

    • 2 .接收Leader消息并进行处理;

    • 3 .接收Client的请求,如果为写请求,发送给Leader进行投票;

    • 4 .返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

    • 1 .PING消息:心跳消息;

    • 2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;

    • 3 .COMMIT消息:服务器端最新一次提案的信息;

    • 4 .UPTODATE消息:表明同步完成;

    • 5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的  session还是允许其接受消息;

    • 6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。


5、Zookeeper leader 选举    

选举机制(全新集群paxos)

以一个简单的例子来说明整个选举的过程.

假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.

1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态

2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.

3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.

4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.

5) 服务器5启动,同4一样,当小弟.


非全新集群的选举机制(数据恢复)

那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。


需要加入数据id、leader id和逻辑时钟。


数据id:数据新的id就大,数据每次更新都会更新id。


Leader id:就是我们配置的myid中的值,每个机器一个。


逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说:  如果在同一次选举中,那么这个值应该是一致的 ;  逻辑时钟值越大,说明这一次选举leader的进程更新.


选举的标准就变成:


1、逻辑时钟小的选举结果被忽略,重新投票


2、统一逻辑时钟后,数据id大的胜出


3、数据id相同的情况下,leader id大的胜出


根据这个规则选出leader。


      • 半数通过


    – 3台机器 挂一台 2>3/2

    – 4台机器 挂2台 2!>4/2


  • A提案说,我要选自己,B你同意吗?C你同意吗?B说,我同意选A;C说,我同意选A。(注意,这里超过半数了,其实在现实世界选举已经成功了。


   但是计算机世界是很严格,另外要理解算法,要继续模拟下去。)

  • 接着B提案说,我要选自己,A你同意吗;A说,我已经超半数同意当选,你的提案无效;C说,A已经超半数同意当选,B提案无效。

  • 接着C提案说,我要选自己,A你同意吗;A说,我已经超半数同意当选,你的提案无效;B说,A已经超半数同意当选,C的提案无效。

  • 选举已经产生了Leader,后面的都是follower,只能服从Leader的命令。而且这里还有个小细节,就是其实谁先启动谁当头。

  


6、zxid

  • znode节点的状态信息中包含czxid, 那么什么是zxid呢?

  • ZooKeeper状态的每一次改变, 都对应着一个递增的Transaction id, 该id称为zxid. 由于zxid的递增性质, 如果zxid1小于zxid2, 那么zxid1肯定先于zxid2发生.


   创建任意节点, 或者更新任意节点的数据, 或者删除任意节点, 都会导致Zookeeper状态发生改变, 从而导致zxid的值增加.


7、Zookeeper工作原理

  » Zookeeper的核心是原子广播,这个机制保证了各个server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式和广播模式。


   当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数server的完成了和leader的状态同步以后,恢复模式就结束了。


   状态同步保证了leader和server具有相同的系统状态


  » 一旦leader已经和多数的follower进行了状态同步后,他就可以开始广播消息了,即进入广播状态。这时候当一个server加入zookeeper服务中,它会在恢复模式下启动,


   发现leader,并和leader进行状态同步。待到同步结束,它也参与消息广播。Zookeeper服务一直维持在Broadcast状态,直到leader崩溃了或者leader失去了大部分


   的followers支持。


  » 广播模式需要保证proposal被按顺序处理,因此zk采用了递增的事务id号(zxid)来保证。所有的提议(proposal)都在被提出的时候加上了zxid。


   实现中zxid是一个64为的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch。低32位是个递增计数。


  » 当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的server都恢复到一个正确的状态。 


  » 每个Server启动以后都询问其它的Server它要投票给谁。

  » 对于其他server的询问,server每次根据自己的状态都回复自己推荐的leader的id和上一次处理事务的zxid(系统启动时每个server都会推荐自己)

  » 收到所有Server回复以后,就计算出zxid最大的哪个Server,并将这个Server相关信息设置成下一次要投票的Server。

  » 计算这过程中获得票数最多的的sever为获胜者,如果获胜者的票数超过半数,则改server被选为leader。否则,继续这个过程,直到leader被选举出来  


  » leader就会开始等待server连接

  » Follower连接leader,将最大的zxid发送给leader

  » Leader根据follower的zxid确定同步点

  » 完成同步后通知follower 已经成为uptodate状态

  » Follower收到uptodate消息后,又可以重新接受client的请求进行服务了


8、数据一致性与paxos 算法  

  • 据说Paxos算法的难理解与算法的知名度一样令人敬仰,所以我们先看如何保持数据的一致性,这里有个原则就是:

  • 在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。

  • Paxos算法解决的什么问题呢,解决的就是保证每个节点执行相同的操作序列。好吧,这还不简单,master维护一个

     全局写队列,所有写操作都必须 放入这个队列编号,那么无论我们写多少个节点,只要写操作是按编号来的,就能保证一

   致性。没错,就是这样,可是如果master挂了呢。

  • Paxos算法通过投票来对写操作进行全局编号,同一时刻,只有一个写操作被批准,同时并发的写操作要去争取选票,

   只有获得过半数选票的写操作才会被 批准(所以永远只会有一个写操作得到批准),其他的写操作竞争失败只好再发起一

   轮投票,就这样,在日复一日年复一年的投票中,所有写操作都被严格编号排 序。编号严格递增,当一个节点接受了一个

   编号为100的写操作,之后又接受到编号为99的写操作(因为网络延迟等很多不可预见原因),它马上能意识到自己 数据

   不一致了,自动停止对外服务并重启同步过程。任何一个节点挂掉都不会影响整个集群的数据一致性(总2n+1台,除非挂掉大于n台)。

  总结

  • Zookeeper 作为 Hadoop 项目中的一个子项目,是 Hadoop 集群管理的一个必不可少的模块,它主要用来控制集群中的数据,


   如它管理 Hadoop 集群中的 NameNode,还有 Hbase 中 Master Election、Server 之间状态同步等。\


   关于Paxos算法可以查看文章 Zookeeper全解析——Paxos作为灵魂


   推荐书籍:《从Paxos到Zookeeper分布式一致性原理与实践》


9、Observer  

  • Zookeeper需保证高可用和强一致性;

  • 为了支持更多的客户端,需要增加更多Server;

  • Server增多,投票阶段延迟增大,影响性能;

  • 权衡伸缩性和高吞吐率,引入Observer

  • Observer不参与投票;

  • Observers接受客户端的连接,并将写请求转发给leader节点;

  • 加入更多Observer节点,提高伸缩性,同时不影响吞吐率


10、 为什么zookeeper集群的数目,一般为奇数个?

  •Leader选举算法采用了Paxos协议;

  •Paxos核心思想:当多数Server写成功,则任务数据写成功如果有3个Server,则两个写成功即可;如果有4或5个Server,则三个写成功即可。

  •Server数目一般为奇数(3、5、7)如果有3个Server,则最多允许1个Server挂掉;如果有4个Server,则同样最多允许1个Server挂掉由此,


    我们看出3台服务器和4台服务器的的容灾能力是一样的,所以为了节省服务器资源,一般我们采用奇数个数,作为服务器部署个数。


11、Zookeeper 的数据模型 

  » 层次化的目录结构,命名符合常规文件系统规范

  » 每个节点在zookeeper中叫做znode,并且其有一个唯一的路径标识

  » 节点Znode可以包含数据和子节点,但是EPHEMERAL类型的节点不能有子节点

  » Znode中的数据可以有多个版本,比如某一个路径下存有多个数据版本,那么查询这个路径下的数据就需要带上版本

  » 客户端应用可以在节点上设置监视器

  » 节点不支持部分读写,而是一次性完整读写


12、Zookeeper 的节点

  » Znode有两种类型,短暂的(ephemeral)和持久的(persistent)

  » Znode的类型在创建时确定并且之后不能再修改

  » 短暂znode的客户端会话结束时,zookeeper会将该短暂znode删除,短暂znode不可以有子节点

  » 持久znode不依赖于客户端会话,只有当客户端明确要删除该持久znode时才会被删除

  » Znode有四种形式的目录节点

  » PERSISTENT(持久的)

  » EPHEMERAL(暂时的)

  » PERSISTENT_SEQUENTIAL(持久化顺序编号目录节点)

  » EPHEMERAL_SEQUENTIAL(暂时化顺序编号目录节点)

————————————————

版权声明:本文为CSDN博主「一尘在心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

https://blog.csdn.net/zhanaolu4821/article/details/85235609


如有文章对你有帮助,

欢迎关注❤️、点赞👍、转发📣!



推荐 Java面试手册 
内容包括网络协议、Java基础、进阶、字符串、集合、并发、JVM、数据结构、算法、MySQL、Redis、Mongo、Spring、SpringBoot、MyBatis、SpringCloud、Linux以及各种中间件(Dubbo、Nginx、Zookeeper、MQ、Kafka、ElasticSearch)等等...

点击文末“阅读原文”可直达

浏览 39
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报