DataTorrent流式处理和分析平台

联合创作 · 2023-10-01 06:40

DataTorrent是一个实时的流式处理和分析平台,它每秒可以处理超过10亿个实时事件。

Twitter平均每秒大约6000条微博相比,最近发布的DataTorrent 1.0似乎已经超出了需求,它每秒可以处理超过10亿个实时事件。他们在一个包含37个节点的集群上进行了测试,每个节点256GB内存、12核超线程CPU。在CPU达到饱和之前,DataTorrent声称已经实现了线性扩展,而CPU达到饱和时处理速度为每秒16亿个事件。Phu Hoang是DataTorrent的联合创始人和CEO,他告诉InfoQ,在同样的硬件上,他们的解决方案在性能上比Apache Spark要高“好几个数量级”。

DataTorrent基于Hadoop 2.x构建,是一个实时的、有容错能力的数据流式处理和分析平台,它使用本地Hadoop应用程序,而这些应用程序可以与执行其它任务,如批处理,的应用程序共存。该平台的架构如下图所示:

StrAM(Streaming Application Master)是一个本地的YARN Application Master,负责管理将要在Hadoop集群上执行的逻辑DAG(Directed Acyclic Graph),包括资源分配、分区、扩展、调度、Web服务、运行时更改、统计、SLA执行、安全等等。

在架构示意图的上层,用户应用程序作为已连接的算子和/或应用程序模板存在。算子的示例有InputReceiver(模拟接收输入数据)、Average(针对指定维度的键计算数据平均值)、RedisAverageOutput(将计算好的平均值写入Redis数据存储)、SmtpAvgOperator(发送电子邮件警报)。这些算子是Malhar库的一部分,该库包含了超过400个这样的算子,并在GitHub上开源。用户可以根据需要编写其它算子。

浏览 10
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报