CaptchaCracker验证码识别
CaptchaCracker 是一个开源的 Python 库,它提供了创建和应用深度学习模型来识别 Captcha 图像的功能。你可以创建一个深度学习模型,如下图所示识别 Captcha 图像中的数字,并输出一串数字,或者你可以自己尝试这个模型。
Input
Output
023062
Examples
训练和保存模型
在执行模型训练之前,应准备好训练数据图像文件,在文件名中注明验证码图像的实际值,如下图所示。
import glob import CaptchaCracker as cc # Training image data path train_img_path_list = glob.glob("../data/train_numbers_only/*.png") # Training image data size img_width = 200 img_height = 50 # Creating an instance that creates a model CM = cc.CreateModel(train_img_path_list, img_width, img_height) # Performing model training model = CM.train_model(epochs=100) # Saving the weights learned by the model to a file model.save_weights("../model/weights.h5")
加载一个已保存的模型来进行预测
import CaptchaCracker as cc # Target image data size img_width = 200 img_height = 50 # Target image label length max_length = 6 # Target image label component characters = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'} # Model weight file path weights_path = "../model/weights.h5" # Creating a model application instance AM = cc.ApplyModel(weights_path, img_width, img_height, max_length, characters) # Target image path target_img_path = "../data/target.png" # Predicted value pred = AM.predict(target_img_path) print(pred)
评论