jiebaPython中文分词组件
jieba
"结巴"中文分词:做最好的Python中文分词组件 "Jieba"
Feature
-
支持三种分词模式:
-
精确模式,试图将句子最精确地切开,适合文本分析;
-
全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
-
搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
-
-
支持繁体分词
-
支持自定义词典
在线演示
http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)
Python 2.x 下的安装
-
全自动安装:easy_install jieba 或者 pip install jieba
-
半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
-
手动安装:将jieba目录放置于当前目录或者site-packages目录
-
通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
Python 3.x 下的安装
-
目前master分支是只支持Python2.x 的
-
Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
git clone https://github.com/fxsjy/jieba.git git checkout jieba3k python setup.py install
Algorithm
-
基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
-
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
-
对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法
功能 1):分词
-
jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式
-
jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
-
注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
-
jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding=utf-8 import jieba seg_list = jieba.cut("我来到北京清华大学",cut_all=True) print "Full Mode:", "/ ".join(seg_list) #全模式 seg_list = jieba.cut("我来到北京清华大学",cut_all=False) print "Default Mode:", "/ ".join(seg_list) #精确模式 seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式 print ", ".join(seg_list) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式 print ", ".join(seg_list)
Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 【精确模式】: 我/ 来到/ 北京/ 清华大学 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
功能 2) :添加自定义词典
-
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
-
词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
-
范例:
-
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
-
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
-
自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
-
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
-
-
"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
功能 3) :关键词提取
-
jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
-
setence为待提取的文本
-
topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
功能 4) : 词性标注
-
标注句子分词后每个词的词性,采用和ictclas兼容的标记法
-
用法示例
>>> import jieba.posseg as pseg >>> words =pseg.cut("我爱北京天安门") >>> for w in words: ... print w.word,w.flag ... 我 r 爱 v 北京 ns 天安门 ns
功能 5) : 并行分词
-
原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升
-
基于python自带的multiprocessing模块,目前暂不支持windows
-
用法:
-
jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
-
jieba.disable_parallel() # 关闭并行分词模式
-
-
例子: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
-
实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。
功能 6) : Tokenize:返回词语在原文的起始位置
-
注意,输入参数只接受unicode
-
默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2 word 服装 start: 2 end:4 word 饰品 start: 4 end:6 word 有限公司 start: 6 end:10
-
搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2 word 服装 start: 2 end:4 word 饰品 start: 4 end:6 word 有限 start: 6 end:8 word 公司 start: 8 end:10 word 有限公司 start: 6 end:10
功能 7) : ChineseAnalyzer for Whoosh搜索引擎
-
引用: from jieba.analyse import ChineseAnalyzer
-
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
其他词典
-
占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
-
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')
模块初始化机制的改变:lazy load (从0.28版本开始)
jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。
import jieba jieba.initialize() #手动初始化(可选)
在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
分词速度
-
1.5 MB / Second in Full Mode
-
400 KB / Second in Default Mode
-
Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
常见问题
1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7
2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2
更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed