Apache InLong分布式消息中间件系统

联合创作 · 2023-10-01 03:58

Apache InLong(原 Apache TubeMQ 项目更名)是腾讯在 2013 年自研的分布式消息中间件系统,专注服务大数据场景下海量数据的高性能存储和传输,较之于众多明星的开源 MQ组件,TubeMQ 在海量实践(稳定性+性能)和低成本方面有着比较好的核心优势。

2019 年 9 月 12 日,Apache 软件基金会成立 20 周年之际,腾讯在 ApacheCon 宣布 TubeMQ 捐赠给 ASF。TubeMQ 成为腾讯开源第一个捐赠 Apache 基金会的项目。

特性:

  • 纯 Java 实现语言
  • 引入 Master 协调节点:相比 Kafka 依赖于 Zookeeper 完成元数据的管理和实现 HA 保障不同,TubeMQ 系统采用的是自管理的元数据仲裁机制方式进行,Master 节点通过采用内嵌数据库 BDB 完成集群内元数据的存储、更新以及 HA 热切功能,负责 TubeMQ 集群的运行管控和配置管理操作,对外提供接口等;通过 Master 节点,TubeMQ 集群里的 Broker 配置设置、变更及查询实现了完整的自动化闭环管理,减轻了系统维护的复杂度
  • 服务器侧消费负载均衡:TubeMQ 采用的是服务侧负载均衡的方案,而不是客户端侧操作,提升系统的管控能力同时简化客户端实现,更便于均衡算法升级
  • 系统行级锁操作:对于 Broker 消息读写中存在中间状态的并发操作采用行级锁,避免重复问题
  • Offset 管理调整:Offset 由各个 Broker 独自管理,ZK 只作数据持久化存储用(最初考虑完全去掉ZK依赖,考虑到后续的功能扩展就暂时保留)
  • 消息读取机制的改进:TubeMQ 采用的是消息随机读取模式,同时为了降低消息时延又增加了内存缓存读写,对于带 SSD 设备的机器,增加消息滞后转 SSD 消费的处理,解决消费严重滞后时吞吐量下降以及 SSD 磁盘容量小、刷盘次数有限的问题,使其满足业务快速生产消费的需求
  • 消费者行为管控:支持通过策略实时动态地控制系统接入的消费者行为,包括系统负载高时对特定业务的限流、暂停消费,动态调整数据拉取的频率等;
  • 服务分级管控:针对系统运维、业务特点、机器负载状态的不同需求,系统支持运维通过策略来动态控制不同消费者的消费行为,比如是否有权限消费、消费时延分级保证、消费限流控制,以及数据拉取频率控制等
  • 系统安全管控:根据业务不同的数据服务需要,以及系统运维安全的考虑,TubeMQ 系统增加了 TLS 传输层加密管道,生产和消费服务的认证、授权,以及针对分布式访问控制的访问令牌管理,满足业务和系统运维在系统安全方面的需求
  • 资源利用率提升改进:相比于 Kafka,TubeMQ 采用连接复用模式,减少连接资源消耗;通过逻辑分区构造,减少系统对文件句柄数的占用,通过服务器端过滤模式,减少网络带宽资源使用率;通过剥离对 Zookeeper 的使用,减少 Zookeeper 的强依赖及瓶颈限制
  • 客户端改进:基于业务使用上的便利性以,我们简化了客户端逻辑,使其做到最小的功能集合,我们采用基于响应消息的接收质量统计算法来自动剔出坏的 Broker 节点,基于首次使用时作连接尝试来避免大数据量发送时发送受阻

 

浏览 9
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报