期望最大化(Expectation Maximization)算法简介和Python代码实现(附代码)
数据派THU
共 5961字,需浏览 12分钟
·
2022-06-08 08:33
来源:DeepHub IMBA 本文约3400字,建议阅读5分钟
本文中通过几个简单的示例解释期望最大化算法是如何工作的。
这个算法最流行的例子(互联网上讨论最多的)可能来自这篇论文
(http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html)。这是一个非常简单的例子,所以我们也从这里开始。
m = 10 # number of flips in experimentn = 5 # number of experiments
p_1 = 0.8
p_2 = 0.3
xs = [] # number of heads in each experiment
zs = [0,0,1,0,1] # which coin to flip
np.random.seed(5)
for i in zs:
if i==0:
xs.append(stats.binom(n=m, p=p_1).rvs()) # flip coin 1
elif i==1:
xs.append(stats.binom(n=m, p=p_2).rvs()) # flip coin 2
xs = np.array(xs)
print(xs)
exp1 = [0,1,3] # indexes of experiments with coin 1
exp2 = [2,4] # indexes of experiments with coin 2
print('Analytical solutions:')
print('p1: ', xs[exp1].sum() / (m * len(exp1)))
print('p2: ', xs[exp2].sum() / (m * len(exp2)))
ef neg_log_likelihood(probs, m, xs, zs):
'''
compute negative log-likelihood
'''
ll = 0
for x,z in zip(xs,zs):
ll += stats.binom(p=probs[z], n=m).logpmf(x)
return -ll
res = optimize.minimize(neg_log_likelihood, [0.5,0.5], bounds=[(0,1),(0,1)], args=(m,xs,zs), method='tnc')
print('Numerical solution:')
print('p1: ', res.x[0])
print('p2: ', res.x[1])
期望步骤(E-step):计算完整对数似然函数相对于 Z 给定数据 X 的当前条件分布和当前参数估计 theta 的条件期望; 最大化步骤(M-step):找到最大化该期望的参数 theta 的值。
m = 10 # number of flips in each sample
n = 5 # number of samples
xs = np.array([5,9,8,4,7])
theta = [0.6, 0.5] # initial guess p_1, p_2
for i in range(10):
theta =
T_1s = []
T_2s = []
# E-step
for x in xs:
T_1 = stats.binom(n=m,p=theta[0]).pmf(x) / (stats.binom(n=m,p=theta[0]).pmf(x) +
m,p=theta[1]).pmf(x)) =
T_2 = stats.binom(n=m,p=theta[1]).pmf(x) / (stats.binom(n=m,p=theta[0]).pmf(x) +
m,p=theta[1]).pmf(x)) =
T_1s.append(T_1)
T_2s.append(T_2)
# M-step
T_1s = np.array(T_1s)
T_2s = np.array(T_2s)
p_1 = np.dot(T_1s, xs) / (m * np.sum(T_1s))
p_2 = np.dot(T_2s, xs) / (m * np.sum(T_2s))
{i}, p1={p_1:.2f}, p2={p_2:.2f}') :
theta = [p_1, p_2]
# model parameters
p_1 = 0.1
p_2 = 0.8
tau_1 = 0.3
tau_2 = 1-tau_1
m = 10 # number of flips in each sample
n = 10 # number of samples
# generate data
np.random.seed(123)
dists = [stats.binom(n=m, p=p_1), stats.binom(n=m, p=p_2)]
xs = [dists[x].rvs() for x in np.random.choice([0,1], size=n, p=[tau_1,tau_2])]
# random initial guess
np.random.seed(123)
theta = [np.random.rand() for _ in range(3)]
last_ll = 0
max_iter = 100
for i in range(max_iter):
theta =
T_1s = []
T_2s = []
# E-step
lls = []
for x in xs:
denom = (tau * stats.binom(n=m,p=p_1).pmf(x) + (1-tau) * stats.binom(n=m,p=p_2).pmf(x))
T_1 = tau * stats.binom(n=m,p=p_1).pmf(x) / denom
T_2 = (1-tau) * stats.binom(n=m,p=p_2).pmf(x) / denom
T_1s.append(T_1)
T_2s.append(T_2)
* np.log(tau * stats.binom(n=m,p=p_1).pmf(x)) +
T_2 * np.log(tau * stats.binom(n=m,p=p_2).pmf(x)))
# M-step
T_1s = np.array(T_1s)
T_2s = np.array(T_2s)
tau = np.sum(T_1s) / n
p_1 = np.dot(T_1s, xs) / (m * np.sum(T_1s))
p_2 = np.dot(T_2s, xs) / (m * np.sum(T_2s))
{i}, tau={tau}, p1={p_1:.2f}, p2={p_2:.2f}, log_likelihood={sum(lls):.2f}') :
theta = [tau, p_1, p_2]
# stop when likelihood doesn't improve anymore
if abs(sum(lls) - last_ll) < 0.001:
break
else:
last_ll=sum(lls)
https://github.com/financialnoob/misc/blob/305bf8bc7cbdddaf47d40078100ba27935ff4452/6.introduction_to_em_algorithm.ipynb
编辑:于腾凯 校对:林亦霖
评论